Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Articoli Scientifici

V. 49 N. 1 (2025)

L’efficacia di un sistema di controllo attivo del rumore con tecnica dei microfoni remoti nella cabina di un trattore

DOI
https://doi.org/10.3280/ria1-2025oa19189
Inviata
17 gennaio 2025
Pubblicato
22-09-2025

Abstract

Questo articolo mostra uno studio preliminare di un sistema di controllo attivo del rumore (ANC) implementato sulla cabina di un trattore. Tale sistema sfrutta una configurazione feedforward multi-canale, con due microfoni di errore e due altoparlanti di controllo posizionati in cabina e un microfono di riferimento esterno. Inoltre, il sistema impiega la tecnica dei microfoni remoti (RMT), che consente di posizionare i microfoni di errore a una data distanza dalla zona in cui si vuole creare la zona di quiete, in questo caso attorno alla testa di un manichino utilizzato per misure binaurali. Per la valutazione dell’efficacia del sistema ANC vengono generati segnali di disturbo simulati, a banda stretta e a banda larga, attraverso una sorgente acustica posizionata esternamente alla cabina. I risultati mostrano che il sistema sviluppato ha la potenzialità per un’applicazione reale. Nonostante una riduzione delle prestazioni rispetto al caso senza RMT, causata dalla modellazione interna dei segnali, il sistema sviluppato dimostra una potenzialità per un’applicazione reale, dove i microfoni di errore non possono essere lasciati in prossimità della zona in cui si vuole cancellare il rumore.

Riferimenti bibliografici (comprensivi di DOI)

  1. A. Pizzuti, A. Papale, L. A., P. Nataletti, I. Pinto, G. Campo, Sistema di sorveglianza delle malattie professionali: Ipoacusia da rumore un problema di salute ancora attuale sul lavoro, Inail, 2018.
  2. Relazione annuale 2021 del Presidente - Appendice statistica, Inail, 2022.
  3. G. Santoro, G. Vassalini, L. Ragni, G. Casini Ropa, La misura dell’esposizione al rumore in agricoltura, (1999).
  4. K.N. Dewangan, G.V.P. Kumar, V.K. Tewari, Noise characteristics of tractors and health effect on farmers, Appl. Acoust. 66 (2005) 1049–1062. https://doi.org/10.1016/j.apacoust.2005.01.002.
  5. J.D.C. Talamo, Effects of cab noise environment on the hearing perception of agricultural tractor drivers, Appl. Acoust. 12 (1979) 125–137. https://doi.org/10.1016/0003-682X(79)90030-6.
  6. V. Ravindran, B. Prakash, Agricultural tractor noise control, in: SAE 2013 Commer. Veh. Eng. Congr., 2013. https://doi.org/10.4271/2013-01-2342.
  7. S. Velioglu, A. Yıldız, M. Doganli, O. Tandogan, Interior noise analysis and prediction of a tractor cabin with emphasis on correlations with experimental data, in: SAE 2013 Noise Vib. Conf. Exhib., 2013. https://doi.org/10.4271/2013-01-1964.
  8. P.S. Yadav, A.A. Gaikwad, S.Y. Badgujar, Y.V. Surkutwar, N.V. Karanth, Noise reduction on agricultural tractor, in: Symp. Int. Automot. Technol. 2013, 2013. https://doi.org/10.4271/2013-26-0103.
  9. A.M. Abd-El-Tawwab, S.A. Abouel-Seoud, F.M. El-Sayed, T.A. Abd-El-Hakim, Characteristics of agriculture tractor interior noise, J. Low Freq. Noise Vib. Act. Control 19 (2000) 73–81. https://doi.org/10.1260/0263092001492822.
  10. J.P. Evans, R.T. Whyte, J.S. Price, J.M. Bacon, D.A. Semple, A.J. Scarlett, R.M. Stayner, Practical solutions to noise problems in agriculture, Health and Safety Executive, 2004.
  11. H.-W. Han, W.-H. Im, H.-J. Choi, S.-J. Cho, S.-D. Lee, Y.-J. Park, Effect of sound insulation on noise reduction in an agricultural tractor cab, Sci. Rep. 12 (2022) 22038. https://doi.org/10.1038/s41598-022-26408-3.
  12. D. Pessina, M. Guerretti, Effectiveness of hearing protection devices in the hazard reduction of noise from used tractors, J. Agric. Eng. Res. 75 (2000) 73–80. https://doi.org/10.1006/jaer.1999.0489.
  13. J. Jiang, Y. Li, Review of active noise control techniques with emphasis on sound quality enhancement, Appl. Acoust. 136 (2018) 139–148. https://doi.org/10.1016/j.apacoust.2018.02.021.
  14. S.J. Elliott, P.A. Nelson, Active noise control, IEEE Signal Process. Mag. 10 (1993) 12–35. https://doi.org/10.1109/79.248551.
  15. S.M. Kuo, D.R. Morgan, Active noise control: a tutorial review, Proc. IEEE 87 (1999) 943–975. https://doi.org/10.1109/5.763310.
  16. S.M. Kuo, I. Panahi, K.M. Chung, T. Horner, M. Nadeski, J. Chyan, Design of active noise control systems with the TMS320 family, (1996).
  17. Z. Zhang, C. Shi, X. Lv, Z. Ling, Active control of interior road noise using the remote microphone technique, INTER-NOISE NOISE-CON Congr. Conf. Proc. 265 (2023) 916–920. https://doi.org/10.3397/IN_2022_0130.
  18. W. Jung, S.J. Elliott, J. Cheer, Local active control of road noise inside a vehicle, Mech. Syst. Signal Process. 121 (2019) 144–157. https://doi.org/10.1016/j.ymssp.2018.11.003.
  19. S. Elliott, C.K. Lai, T. Vergez, J. Cheer, Robust stability and performance of local active control systems using virtual sensing, in: 23rd Int. Congr. Acoust., 2019.
  20. D. Moreau, B. Cazzolato, A. Zander, C. Petersen, A review of virtual sensing algorithms for active noise control, Algorithms 1 (2008) 69–99. https://doi.org/10.3390/a1020069.
  21. N. Jiang, C. Shi, H. Li, Y. Kajikawa, Near-field error sensing of multi-channel active noise control using virtual sensing technique, in: 25th Int. Congr. Sound Vib., 2018.
  22. P.S.S. Ahamed, P. Duraiswamy, Virtual sensing active noise control system with 2D microphone array for automotive applications, in: 2019 6th Int. Conf. Signal Process. Integr. Netw. SPIN, IEEE, Noida, India, 2019: pp. 151–155. https://doi.org/10.1109/SPIN.2019.8711608.
  23. R. Maeda, Y. Kajikawa, Comparisons of two virtual sensing methods for broadband noise, in: 23rd Int. Congr. Acoust., 2019.
  24. S. Turpati, V. Moram, Implementation of robust virtual sensing algorithm in active noise control to improve silence zone, Int. J. Speech Technol. 26 (2023) 51–62. https://doi.org/10.1007/s10772-021-09845-9.
  25. E. Sasaki, M. Kamata, A. Sano, Virtual error approach to direct multi- channel adaptive active noise control, in: 13th Int. Congr. Sound Vib., 2006.
  26. M. Pawelczyk, Polynomial approach to design of feedback virtual-microphone active noise control system, in: 13th Int. Congr. Sound Vib., 2006.
  27. I.T. Ardekani, W.H. Abdulla, An adaptive signal processing system for active control of sound in remote locations, in: 2013 Asia-Pac. Signal Inf. Process. Assoc. Annu. Summit Conf., IEEE, Kaohsiung, Taiwan, 2013: pp. 1–7. https://doi.org/10.1109/APSIPA.2013.6694322.
  28. I.T. Ardekani, W.H. Abdullah, S.U. Rehman, Remote FxLMS algorithm for active control of sound in remote locations, in: Signal Inf. Process. Assoc. Annu. Summit Conf. APSIPA 2014 Asia-Pac., IEEE, Chiang Mai, Thailand, 2014: pp. 1–5. https://doi.org/10.1109/APSIPA.2014.7041553.
  29. D.J. Moreau, B.S. Cazzolato, A.C. Zander, Active noise control at a moving virtual microphone using the SOTDF moving virtual sensing method, in: Proc. Acoust. 2009, 2009.
  30. S. Höber, C. Pape, E. Reithmeier, Generating a position-adaptive quiet zone in enclosed spaces, in: Internoise 2017, 2017.
  31. Y. Kajikawa, Y. Kajikawa, A Study on Improving the Robustness of Virtual Sensing Methods in ANC Systems, INTER-NOISE NOISE-CON Congr. Conf. Proc. 265 (2023) 5451–5458. https://doi.org/10.3397/IN_2022_0801.
  32. C.K. Lai, B. Lam, D. Shi, W.-S. Gan, Real-time modelling of observation filter in the remote microphone technique for an active noise control application, in: ICASSP 2023 - 2023 IEEE Int. Conf. Acoust. Speech Signal Process. ICASSP, IEEE, Rhodes Island, Greece, 2023: pp. 1–5. https://doi.org/10.1109/ICASSP49357.2023.10095752.
  33. S.J. Elliott, J. Garcia-Bonito, Active cancellation of pressure and pressure gradient in a diffuse sound field, J. Sound Vib. 186 (1995) 696–704. https://doi.org/10.1006/jsvi.1995.0482.
  34. F. Mori, A. Santoni, P. Fausti, F. Pompoli, P. Bonfiglio, P. Nataletti, The effectiveness of least mean squared-based adaptive algorithms for active noise control system in a small confined space, Appl. Sci. 13 (2023) 11173. https://doi.org/10.3390/app132011173.
  35. S.J. Elliott, W. Jung, J. Cheer, Causality and robustness in the remote sensing of acoustic pressure, with application to local active sound control, in: ICASSP 2019 - 2019 IEEE Int. Conf. Acoust. Speech Signal Process. ICASSP, IEEE, Brighton, United Kingdom, 2019: pp. 8484–8488. https://doi.org/10.1109/ICASSP.2019.8682474.
  36. D. Shi, B. Lam, W. Gan, Analysis of multichannel virtual sensing active noise control to overcome spatial correlation and causality constraints, in: ICASSP 2019 - 2019 IEEE Int. Conf. Acoust. Speech Signal Process. ICASSP, IEEE, Brighton, United Kingdom, 2019: pp. 8499–8503. https://doi.org/10.1109/ICASSP.2019.8682344.
  37. A. David, S.J. Elliott, Numerical studies of actively generated quiet zones, Appl. Acoust. 41 (1994) 63–79. https://doi.org/10.1016/0003-682X(94)90085-X.

Metriche

Caricamento metriche ...