Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Articoli/Articles

V. 15 N. 1 (2024): Pedagogia Speciale, Terza Missione e impatto sociale: riflessioni e pratiche per una comunità inclusiva

Un laboratorio di formazione permanente per gli insegnanti sulla robotica e le metodologie didattiche per l’inclusione

DOI
https://doi.org/10.3280/ess1-2024oa17500
Inviata
15 marzo 2024
Pubblicato
24-06-2024

Abstract

Il contributo intende presentare le linee d’azione intraprese dall’Università di Genova (Dipartimento di Scienze della Formazione) con l’obiettivo di creare un laboratorio permanente di formazione rivolto a docenti di ogni ordine e grado in cui sia possibile far acquisire loro la capacità di progettare percorsi di apprendimento inclusivi mediante l’applicazione di strumentazioni robotiche e metodologie di didattica attiva. La creazione del laboratorio è stata pensata nell’ambito del progetto “Progettare e applicare metodologie didattiche attive alla robotica sociale e ai mondi virtuali 3d per favorire l’inclusione scolastica degli studenti con sindrome dello spettro autistico. La realizzazione di un Laboratorio di formazione permanente per insegnanti dalla scuola dell’infanzia alla scuola secondaria di secondo grado”, finanziato dalla Fondazione Italiana Autismo (FIA) nell’anno 2023 e attualmente in corso di svolgimento.

Riferimenti bibliografici

  1. Ackermann E. (2002). Ambienti di gioco programmabili: cos’è possibile per un bam-bino di quattro anni. TD-Tecnologie Didattiche, 27: 48-55.
  2. Alimisis D. (2009). Robotic technologies as vehicles of new ways of thinking, about constructivist teaching and learning: the TERECoP Project. IEEE Robotics and Automation Magazine, 16(3): 21-23.
  3. Alimisis D. (2013). Educational robotics: Open questions and new challenges. Themes in Science & Technology Education, 6(1): 63-71.
  4. Alimisis, D., Kynigos C. (2009). Constructionism and robotics in education. Teacher education on robotic-enhanced constructivist pedagogical methods, 11-26.
  5. Altin H., Pedaste M. (2013). Learning approaches to applying robotics in science education. Journal of baltic science education, 12(3): 365.
  6. Anwar S., Bascou N.A., Menekse M., Kardgar A. (2019). A systematic review of studies on educational robotics. Journal of Pre-College Engineering Education Research (J-PEER), 9(2): 2.
  7. Ayşe KO.Ç., Buyuk U. (2021). Effect of robotics technology in science education on scientific creativity and attitude development. Journal of Turkish Science Education, 18(1): 54-72.
  8. Baroni F., Folci I. (2022). Progettare l’inclusione tra Differenziazione Didattica e Universal Design for Learning: approcci, opportunità e prospettive. Italian Journal of Special Education for Inclusion, 10(2).
  9. Belpaeme T., Baxter P.E., Read R., Wood R., Cuayáhuitl H., Kiefer B., Humbert R. (2012). Multimodal child-robot interaction: Building social bonds. Journal of Human-Robot Interaction, 1(2): 33-53.
  10. Belpaeme T., Kennedy J., Ramachandran A., Scassellati B., Tanaka F. (2018). Social robots for education: A review. Science robotics, 3(21), eaat5954.
  11. Benitti F.B.V., Spolaor N. (2017). How have robots supported STEM teaching?. Robotics in STEM education: Redesigning the learning experience, 103-129.
  12. Bers M. Urrea C. (2000). Technological prayers: Parents and children working with robotics and values. In: Druin A., Hendler J., a cura di, Robots for kids: Exploring new technologies for learning experiences (pp. 194-217). New York: Morgan Kaufman.
  13. Bers M.U., Ponte I., Juelich C., Viera A., Schenker J. (2002). Teachers as designers: Integrating robotics in early childhood education. Information technology in childhood education annual, (1): 123-145.
  14. Bethel C.L., Henkel Z., Stives K., May D.C., Eakin D.K., Pilkinton M., Stubbs-Richardson M. (2016). Using robots to interview children about bullying: Lessons learned from an exploratory study. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (pp. 712-717). IEEE.
  15. Bonaiuti G. (2014). Le strategie didattiche. Carocci Editore.
  16. Boucenna S., Narzisi A., Tilmont E., Muratori F., Pioggia G., Cohen D., Chetouani M. (2014). Interactive technologies for autistic children: A review. Cognitive Computation, 6: 722-740.
  17. Breazeal C., Dautenhahn K., Kanda T. (2016). Social robotics. Springer handbook of robotics, 1935-1972.
  18. Caci B., D’Amico A., Cardaci M. (2004). New frontiers for psychology and education: Robotics. Psychological Reports, 94: 1327-1374.
  19. Catlin D., Blamires M. (2019). Designing Robots for Special Needs Education. Tech-nology, Knowledge and Learning, 24(2): 291-313. doi: 10.1007/s10758-018-9378-8.
  20. Cersosimo R., Pennazio V. (2022). “L’inglese tra tecnologie ed emozioni”: Un percorso inclusivo di avvicinamento alla lingua inglese con elementi di robotica, intelligenza artificiale e realtà virtuale. Lend, 4.
  21. Cole S., Horvath B., Chapman C., Deschenes C., Ebeling D., Sprague Jeffrey (2000). Adapting Curriculum and Instruction in Inclusive Classrooms: A Teacher’s Desk Reference, 2nd Edition. Bloomington.
  22. Diehl J.J., Schmitt L.M., Villano M., Crowell C.R. (2012). The clinical use of robots for individuals with autism spectrum disorders: A critical review. Research in autism spectrum disorders, 6(1): 249-262.
  23. Eguchi A. (2010). What is educational robotics? Theories behind it and practical implementation. In: Gibson D., Dodge B., a cura di, Proceedings of Society for Information Technology & Teacher Education International Conference 2010, AACE, Chesapeake, VA, pp. 4006-4014.
  24. Fridin M., Belokopytov M. (2014). Acceptance of socially assistive humanoid robot by preschool and elementary school teachers. Computers in Human Behavior, 33: 23-31.
  25. Hall T. E., Meyer A., Rose D.H., a cura di (2012). Universal design for learning in the classroom: Practical applications. Guilford press.
  26. Harel I., Papert S. (1991). Constructionism. New Jersey: Ablex Publishing Corporation.
  27. Hockly N. (2016). Focus on learning technologies. Oxford University Press.
  28. Huang G., Moore R.K. (2023). Using social robots for language learning: are we there yet?. Journal of China Computer-Assisted Language Learning, 3(1): 208-230.
  29. Johnson D.W., Johnson R.T., Smith K.A. (1984). Cooperative learning. New Brighton: Interaction Book Company.
  30. Jung S.E., Won E.S. (2018). Systematic review of research trends in robotics education for young children. Sustainability, 10(4): 905.
  31. Kim S.W., Lee Y. (2015). A Survey on Elementary School Teachers’ Attitude toward Robot. In: E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (pp. 1802-1807). Association for the Ad-vancement of Computing in Education (AACE).
  32. Kiuppis F., Hausstätter R. (2014). Inclusive education for all, and especially for some. Inclusive education twenty years after Salamanca, 1-5.
  33. Kochhar-Bryant C.A., Kochhar C., West L.L., Taymans J.M. (2000). Successful inclusion: Practical strategies for a shared responsibility. Prentice Hall.
  34. Kurtts S.A. (2006). Universal design for learning in inclusive classrooms. Electronic Journal for Inclusive Education, 1(10): 7.
  35. Laudanna E., Potenza M.F. (2009). Adattamenti di robot giocattolo: alcune idee. In: S. Besio. Gioco e giocattoli per il bambino con disabilità motoria. Milano: Unicopli.
  36. Lemaignan S., Newbutt N., Rice L., Dal, J. (2022). “It’s important to think of Pepper as a teaching aid or resource external to the classroom”: A social robot in a school for autistic children. International Journal of Social Robotics, 1-22.
  37. Leroux P. (1999). Educational Robotics. International Journal of Artificial Intelligence in Education, 10: 1080-1089.
  38. Lewis T.T., Kim H., Darcy-Mahoney A., Waldron M., Lee W.H., Park C.H. (2021). Robotic uses in pediatric care: A comprehensive review. Journal of Pediatric Nursing, 58: 65-75.
  39. Lytridis, C., Vrochidou, E., Chatzistamatis, S., Kaburlasos, V. (2019). Social engagement interaction games between children with Autism and humanoid robot NAO. In: International Joint Conference SOCO’18-CISIS’18-ICEUTE’18: San Sebas-tián, Spain, June 6-8, 2018 Proceedings 13 (pp. 562-570). Springer International Publishing.
  40. Marsili F., Morganti A., Vivanet G. (2020). Nuovi orizzonti di ricerca in educazione speciale: le sintesi di sintesi. Italian Journal of Special Education for Inclusion, 8(1): 185-200.
  41. Metta G., Sandini G., Vernon D., Natale L., Nori F. (2008). The iCub humanoid robot: an open platform for research in embodied cognition. In: Proceedings of the 8th workshop on performance metrics for intelligent systems (pp. 50-56).
  42. MacDonald A., Huser C., Sikder S., Danaia L. (2020). Effective early childhood STEM education: Findings from the Little Scientists evaluation. Early Childhood Education Journal, 48(3): 353-363.
  43. Oudeyer P.Y., Gottlieb J., Lopes M. (2016). Intrinsic motivation, curiosity, and learn-ing: Theory and applications in educational technologies. Progress in brain research, 229: 257-284.
  44. Papadakis S., Orfanakis V. (2017). The combined use of Lego Mindstorms NXT and App Inventor for teaching novice programmers. Educational Robotics in the Makers Era 1 (pp. 193-204). Springer International Publishing.
  45. Papadakis S., Vaiopoulou J., Sifaki E., Stamovlasis D., Kalogiannakis M. (2021). Attitudes towards the Use of Educational Robotics: Exploring Pre-Service and In-Service Early Childhood Teacher Profiles. Education Sciences, 11(5): 204. doi: 10.3390/educsci11050204.
  46. Papert S. (1980). Mindstorms: Computers, Children and Powerful Ideas. N Y: Basic Books.
  47. Papert S. (1992). The Children’s Machine. N.Y: Basic Books.
  48. Pastra K. (2023). La Robotica nell’Educazione: Entusiasmante o Essenziale?. In: Robot sociali e educazione (pp. 139-154). Raffaello Cortina Editore.
  49. Pedersen B.K.M.K., Larsen J.C., Nielsen J. (2020). The effect of commercially availa-ble educational robotics: A systematic review. Robotics in Education: Current Research and Innovations, 10: 14-27.
  50. Pennazio V. (2017). Social Robotic to help children with autism in the Interaction through imitation, REM, 9: 10-16.
  51. Pennazio V. (2018). Il laboratorio di robotica inclusiva nei percorsi di formazione di insegnanti ed educatori sociali. In: Inclusione 3.0 (pp. 208-231). Milano: FrancoAngeli. https://u-pad.unimc.it/handle/11393/248707.
  52. Pusceddu G., Cocchella F., Bogliolo M., Belgiovine G., Lastrico L., Casadio M., Re, F., Sciutti A. (2022). Training School Teachers to Use Robots as an Educational Tool: The Impact on Robotics Perception. In: Cavallo F., Cabibihan J.J., Fiorini L., Sorrentino A., He H., Liu X., Matsumoto Y., Ge S.S. a cura di, Social Robotics (Vol. 13818, pp. 103-113). Springer Nature Switzerland. doi: 10.1007/978-3-031-24670-8_10.
  53. Reich-Stiebert N., Eyssel F. (2016). Robots in the Classroom: What Teachers Think About Teaching and Learning with Education Robots. In: Agah A., Cabibihan J.J., Howard A.M., Salichs M.A., He H. a cura di, Social Robotics (pp. 671-680). Springer International Publishing. doi: 10.1007/978-3-319-47437-3_66.
  54. Resnick M., Martin F.G., Sargent R., Silverman B. (1996). Programmable bricks: Toys to think with. IBM Systems Journal, 35(3-4): 443-452.
  55. Resnick M. (2000). Commentary: Looking to the future. The Future of Children, 10(2): 173-175.
  56. Robaczewski A., Bouchard J., Bouchard K., Gaboury S. (2021). Socially assistive robots: The specific case of the NAO. International Journal of Social Robotics, 13: 795-831.
  57. Robins B., Dautenhahn K. (2014). Tactile interactions with a humanoid robot: novel play scenario implementations with children with autism. International journal of social robotics, 6: 397-415.
  58. Romero M., Dupont Y. (2016). Educational robotics: from procedural learning to co-creative project oriented challenges with LEGO WeDo. EDULEARN16 proceedings (pp. 6159-6163). IATED.
  59. Salend, S. J. (2001). Creating your own professional portfolio. Intervention in School and clinic, 36(4): 195-201.
  60. Savia G. (2016). Universal Design for Learning: La Progettazione Universale per l’Apprendimento per una didattica inclusiva. Edizioni Centro Studi Erickson.
  61. Scassellati B., Boccanfuso L., Huang C. M., Mademtzi M., Qin M., Salomons N., Shic F. (2018). Improving social skills in children with ASD using a long-term, in-home social robot. Science Robotics, 3(21).
  62. Schank R.C., Berman T.R., Macpherson K.A. (2013). Learning by doing. In Instruc-tional-design theories and models (pp. 161-181). Routledge.
  63. Seckel M.J., Salinas C., Font V., Sala-Sebastia G. (2023). Guidelines to develop com-putational thinking using the Bee-bot robot from the literature. Education and In-formation Technologies, 28(12): 16127-16151.
  64. Serholt S., Barendregt W., Vasalou A., Alves-Oliveira P., Jones A., Petisca S., Paiva A. (2017). The case of classroom robots: teachers’ deliberations on the ethical tensions. Ai Society, 32: 613-631.
  65. Shen S., Slovak P., Jung M.F. (2018). “Stop. I See a Conflict Happening.” A Robot Mediator for Young Children’s Interpersonal Conflict Resolution. In: Proceedings of the 2018 ACM/IEEE international conference on human-robot interaction (pp. 69-77).
  66. Siegel M., Breazeal C., Norton M.I. (2009). Persuasive robotics: The influence of robot gender on human behavior. IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2563-2568). IEEE.
  67. Strollo M.R. (2008). Scienze cognitive e aperture pedagogiche. Nuovi orizzonti nella formazione degli insegnanti. Milano: FrancoAngeli.
  68. Tanaka F., Isshiki K., Takahashi F., Uekusa M., Sei R., Hayashi K. (2015). Pepper learns together with children: Development of an educational application. 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 270-275). IEEE.
  69. Tapus A., Matarić M.J., Scassellati B. (2007). Socially assistive robotics. Grand Chal-lenges of Robotics. IEEE Robot. Autom. Mag., 14.
  70. Toh L.P.E., Causo A., Tzuo P.W., Chen I.M., Yeo S.H. (2016). A review on the use of robots in education and young children. Journal of Educational Technology & Society, 19(2): 148-163.
  71. Zhong B., Xia L. (2020). A systematic review on exploring the potential of educational robotics in mathematics education. International Journal of Science and Mathematics Education, 18(1): 79-101.

Metriche

Caricamento metriche ...