Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Contributi invitati

V. 49 N. 2 (2025)

Sviluppo e ottimizzazione acustica di materiali fibrosi sostenibili

DOI
https://doi.org/10.3280/ria2-2025oa20975
Inviata
9 settembre 2025
Pubblicato
09-12-2025

Abstract

L'impellente necessità di trovare soluzioni sostenibili in diversi settori industriali ha portato a un crescente interesse per l'utilizzo di materiali fibrosi naturali e riciclati per l'isolamento acustico e termico. Sebbene questi materiali offrano significativi vantaggi ambientali, la loro produzione commerciale è ancora limitata anche a causa della mancanza di metodi standardizzati per la loro caratterizzazione e progettazione. Questo articolo affronta tale lacuna presentando una metodologia completa per sviluppare e ottimizzare acusticamente i materiali fibrosi sostenibili. L'approccio integra la caratterizzazione sperimentale su piccola scala con un modello analitico per stimare le prestazioni acustiche di un materiale in funzione della sua densità. L'efficacia di questo metodo è dimostrata attraverso casi di studio che coinvolgono una varietà di materiali sostenibili, tra cui canapa, iuta, posidonia e miscele di fibre riciclate. I risultati validano l’affidabilità della metodologia per la stima delle prestazioni fonoassorbenti di questi materiali, consentendo la progettazione di soluzioni sostenibili in grado di raggiungere prestazioni paragonabili ai materiali tradizionali. Questo articolo, su invito del comitato editoriale RIA, non è uno studio originale. Si tratta invece di una raccolta di ricerche esistenti, i cui dati sono stati rianalizzati e integrati attraverso una metodologia unificata.  

Riferimenti bibliografici (comprensivi di DOI)

  1. F. Asdrubali, S. Schiavoni, K.V. Horoshen-kov, A Review of Sustainable Materials for Acoustic Applications, Building Acoustics 19 (2012) 283–311. https://doi.org/10.1260/1351-010X.19.4.283.
  2. F. Asdrubali, F. D’Alessandro, S. Schiavoni, A review of unconventional sustainable building insulation materials, Sustainable Materials and Technologies 4 (2015) 1–17. https://doi.org/10.1016/j.susmat.2015.05.002.
  3. J. Zach, J. Hroudová, A. Korjenic, Envi-ronmentally efficient thermal and acous-tic insulation based on natural and waste fibers: Environmentally efficient insula-tions based on natural and waste fibers, J. Chem. Technol. Biotechnol. 91 (2016) 2156–2161. https://doi.org/10.1002/jctb.4940.
  4. D. Kumar, M. Alam, P.X.W. Zou, J.G. San-jayan, R.A. Memon, Comparative analysis of building insulation material properties and performance, Renewable and Sustainable Energy Reviews 131 (2020) 110038. https://doi.org/10.1016/j.rser.2020.110038.
  5. S. Islam, G. Bhat, Environmentally-friendly thermal and acoustic insulation materials from recycled textiles, Journal of Environmental Management 251 (2019) 109536. https://doi.org/10.1016/j.jenvman.2019.109536.
  6. F. Ye, H. Wei, Y. Xiao, U. Berardi, G. Quaranta, C. Demartino, Bio-based insulation materials in sustainable constructions: A review of environmental, thermal and acoustic insulation, durability, and mechanical performances, Renewable and Sustainable Energy Reviews 223 (2025) 115872. https://doi.org/10.1016/j.rser.2025.115872.
  7. P. Glé, E. Gourdon, L. Arnaud, Acoustical properties of materials made of vegeta-ble particles with several scales of porosi-ty, Applied Acoustics 72 (2011) 249–259. https://doi.org/10.1016/j.apacoust.2010.11.003.
  8. U. Berardi, G. Iannace, Acoustic characterization of natural fibers for sound absorption applications, Building and Environment 94 (2015) 840–852. https://doi.org/10.1016/j.buildenv.2015.05.029.
  9. K.H. Or, A. Putra, M.Z. Selamat, Oil palm empty fruit bunch fibres as sustainable acoustic absorber, Applied Acoustics 119 (2017) 9–16. https://doi.org/10.1016/j.apacoust.2016.12.002.
  10. A. Putra, K.H. Or, M.Z. Selamat, M.J.M. Nor, M.H. Hassan, I. Prasetiyo, Sound absorption of extracted pineapple-leaf fibres, Applied Acoustics 136 (2018) 9–15. https://doi.org/10.1016/j.apacoust.2018.01.029.
  11. A. Santoni, P. Bonfiglio, P. Fausti, C. Marescotti, V. Mazzanti, F. Mollica, F. Pompoli, Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres, Applied Acoustics 150 (2019) 279–289. https://doi.org/10.1016/j.apacoust.2019.02.022.
  12. P. Soltani, E. Taban, M. Faridan, S.E. Samaei, S. Amininasab, Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber, Applied Acoustics 157 (2020) 106999. https://doi.org/10.1016/j.apacoust.2019.106999.
  13. F. Pompoli, Acoustical Characterization and Modeling of Sustainable Posidonia Fibers, Applied Sciences 13 (2023) 4562. https://doi.org/10.3390/app13074562.
  14. ISO 10534-2: Acoustics — Determination of acoustic properties in impedance tubes Part 2: Two-microphone technique for normal sound absorption coefficient and normal surface impedance, (2023).
  15. ISO 9053-1: Acoustics — Determination of airflow resistance Part 1: Static airflow method, (2018).
  16. ISO 9053-2: Acoustics — Determination of airflow resistance. Part 2: Alter-nating airflow method, (2020).
  17. Y. Champoux, M.R. Stinson, G.A. Dai-gle, Air-based system for the measurement of porosity, The Journal of the Acoustical Society of America 89 (1991) 910–916. https://doi.org/10.1121/1.1894653.
  18. P. Leclaire, O. Umnova, K.V. Horoshenkov, L. Maillet, Porosity measurement by comparison of air volumes, Review of Scientific Instruments 74 (2003) 1366–1370. https://doi.org/10.1063/1.1542666.
  19. Y. Salissou, R. Panneton, Pressure/mass method to measure open porosity of porous solids, Journal of Applied Physics 101 (2007) 124913. https://doi.org/10.1063/1.2749486.
  20. R.J.S. Brown, Connection between formation factor for electrical resistivity and fluid‐solid coupling factor in Biot’s equations for acoustic waves in fluid‐filled porous media, GEOPHYSICS 45 (1980) 1269–1275. https://doi.org/10.1190/1.1441123.
  21. D.L. Johnson, T.J. Plona, C. Scala, F. Pasierb, H. Kojima, Tortuosity and Acoustic Slow Waves, Phys. Rev. Lett. 49 (1982) 1840–1844. https://doi.org/10.1103/PhysRevLett.49.1840.
  22. J.F. Allard, B. Castagnede, M. Henry, W. Lauriks, Evaluation of tortuosity in acoustic porous materials saturated by air, Review of Scientific Instruments 65 (1994) 754–755. https://doi.org/10.1063/1.1145097.
  23. Ph. Leclaire, L. Kelders, W. Lauriks, M. Melon, N. Brown, B. Castagnède, Determination of the viscous and thermal characteristic lengths of plastic foams by ultrasonic measurements in helium and air, Journal of Applied Physics 80 (1996) 2009–2012. https://doi.org/10.1063/1.363817.
  24. Z.E.A. Fellah, S. Berger, W. Lauriks, C. Depollier, C. Aristégui, J.-Y. Chapelon, Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence, The Journal of the Acoustical Society of America 113 (2003) 2424–2433. https://doi.org/10.1121/1.1567275.
  25. O. Umnova, K. Attenborough, H.-C. Shin, A. Cummings, Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials, Applied Acoustics 66 (2005) 607–624. https://doi.org/10.1016/j.apacoust.2004.02.005.
  26. R. Panneton, X. Olny, Acoustical determination of the parameters governing viscous dissipation in porous media, The Journal of the Acoustical Society of America 119 (2006) 2027–2040. https://doi.org/10.1121/1.2169923.
  27. X. Olny, R. Panneton, Acoustical determination of the parameters governing thermal dissipation in porous media, The Journal of the Acoustical Society of America 123 (2008) 814–824. https://doi.org/10.1121/1.2828066.
  28. J.-P. Groby, E. Ogam, L. De Ryck, N. Sebaa, W. Lauriks, Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients, The Journal of the Acoustical Society of America 127 (2010) 764–772. https://doi.org/10.1121/1.3283043.
  29. P. Bonfiglio, F. Pompoli, Inversion Problems for Determining Physical Parameters of Porous Materials: Overview and Comparison Between Different Methods, Acta Acustica United with Acustica 99 (2013) 341–351. https://doi.org/10.3813/AAA.918616.
  30. L. Jaouen, E. Gourdon, P. Glé, Estimation of all six parameters of Johnson-Champoux-Allard-Lafarge model for acoustical porous materials from impedance tube measurements, The Journal of the Acoustical Society of America 148 (2020) 1998–2005. https://doi.org/10.1121/10.0002162.
  31. F. Chevillotte, C. Perrot, R. Panneton, Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams, The Journal of the Acoustical Society of America 128 (2010) 1766–1776. https://doi.org/10.1121/1.3473696.
  32. M. He, C. Perrot, J. Guilleminot, P. Leroy, G. Jacqus, Multiscale prediction of acoustic properties for glass wools: Computational study and experimental validation, The Journal of the Acoustical Society of America 143 (2018) 3283–3299. https://doi.org/10.1121/1.5040479.
  33. F. Pompoli, P. Bonfiglio, Definition of analytical models of non-acoustical parameters for randomly-assembled symmetric and asymmetric radii distribution in parallel fiber structures, Applied Acoustics 159 (2020) 107091. https://doi.org/10.1016/j.apacoust.2019.107091.
  34. T.G. Zieliński, R. Venegas, C. Perrot, M. Červenka, F. Chevillotte, K. Attenborough, Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media, Journal of Sound and Vibration 483 (2020) 115441. https://doi.org/10.1016/j.jsv.2020.115441.
  35. E. Di Giulio, C. Perrot, R. Dragonetti, Transport parameters for sound propagation in air saturated motionless porous materials: A review, International Journal of Heat and Fluid Flow 108 (2024) 109426. https://doi.org/10.1016/j.ijheatfluidflow.2024.109426.
  36. A. Santoni, F. Pompoli, C. Marescotti, P. Fausti, Characterization of fibrous media transport parameters from multi-compression-ratio measurements of normal incidence sound absorption, The Journal of the Acoustical Society of Amer-ica 157 (2025) 1185–1201. https://doi.org/10.1121/10.0035847.
  37. ISO 354: Acoustics — Measurement of sound absorption in a reverberation room, (2003).
  38. ISO 11654: Acoustics — Sound absorbers for use in buildings — Rating of sound absorption, (1997).
  39. M.E. Delany, E.N. Bazley, Acoustical properties of fibrous absorbent materials, Applied Acoustics 3 (1970) 105–116. https://doi.org/10.1016/0003-682X(70)90031-9.
  40. Y. Miki, Acoustical properties of porous materials. Modifications of Delany-Bazley models., J. Acoust. Soc. Jpn. (E), J Acoust Soc Jpn E 11 (1990) 19–24. https://doi.org/10.1250/ast.11.19.
  41. D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech. 176 (1987) 379–402. https://doi.org/10.1017/S0022112087000727.
  42. Y. Champoux, J.-F. Allard, Dynamic tortuosity and bulk modulus in air-saturated porous media, Journal of Ap-plied Physics 70 (1991) 1975–1979. https://doi.org/10.1063/1.349482.
  43. D. Lafarge, P. Lemarinier, J.F. Allard, V. Tarnow, Dynamic compressibility of air in porous structures at audible frequencies, The Journal of the Acoustical Society of America 102 (1997) 1995–2006. https://doi.org/10.1121/1.419690.
  44. S.R. Pride, F.D. Morgan, A.F. Gangi, Drag forces of porous-medium acoustics, Phys. Rev. B 47 (1993) 4964–4978. https://doi.org/10.1103/PhysRevB.47.4964.
  45. A. Tamayol, M. Bahrami, Transverse permeability of fibrous porous media, Phys. Rev. E 83 (2011) 046314. https://doi.org/10.1103/PhysRevE.83.046314.
  46. G.E. Archie, The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics, Transactions of the AIME 146 (1942) 54–62. https://doi.org/10.2118/942054-G.
  47. J.-F. Allard, N. Atalla, Propagation of sound in porous media: modelling sound absorbing materials, 2nd ed, Wiley, Hoboken, N.J, 2009.
  48. M. Villot, C. Guigou, L. Gagliardini, PREDICTING THE ACOUSTICAL RADIA-TION OF FINITE SIZE MULTI-LAYERED STRUCTURES BY APPLYING SPATIAL WIN-DOWING ON INFINITE STRUCTURES, Journal of Sound and Vibration 245 (2001) 433–455. https://doi.org/10.1006/jsvi.2001.3592.
  49. D. Rhazi, N. Atalla, A simple method to account for size effects in the transfer matrix method, The Journal of the Acoustical Society of America 127 (2010) EL30–EL36. https://doi.org/10.1121/1.3280237.
  50. P. Bonfiglio, F. Pompoli, R. Lionti, A reduced-order integral formulation to account for the finite size effect of isotropic square panels using the transfer matrix method, The Journal of the Acoustical Society of America 139 (2016) 1773–1783. https://doi.org/10.1121/1.4945717.
  51. A. Santoni, P. Bonfiglio, P. Fausti, F. Pompoli, Computation of the Alpha Cabin Sound Absorption Coefficient by Using the Finite Transfer Matrix Method (FTMM): Inter-Laboratory Test on Porous Media, Journal of Vibration and Acoustics 143 (2021). https://doi.org/10.1115/1.4048395.
  52. A. Santoni, P. Bonfiglio, A. Magnani, C. Marescotti, F. Pompoli, P. Fausti, A hybrid approach for modelling the acoustic properties of recycled fibre mixtures for automotive applications, Applied Acoustics 182 (2021) 108272. https://doi.org/10.1016/j.apacoust.2021.108272.