Skip to main navigation menu Skip to main content Skip to site footer

Invited contributions

Vol. 49 No. 2 (2025)

Development and acoustic optimisation of sustainable fibrous materials

DOI
https://doi.org/10.3280/ria2-2025oa20975
Submitted
settembre 9, 2025
Published
2025-12-09

Abstract

The urgent need for sustainable solutions in different industrial sectors has led to a growing interest in using natural and recycled fibrous materials for acoustic and thermal insulation. While these materials offer significant environmental benefits, their commercial production is still limited also due to a lack of standardised characterisation and design methods. This paper addresses this gap by presenting a comprehensive methodology to develop and acoustically optimise sustainable fibrous materials. The approach integrates small-scale experimental characterisation with a robust analytical framework that models a material's acoustic performance as a function of its density. The effectiveness of this method is demonstrated through case studies involving a variety of sustainable materials, including hemp, jute, posidonia, and recycled fibre mixtures. The results validate the methodology's ability to accurately predict the sound-absorbing properties of these materials, enabling the design of high-performance solutions capable of achieving acoustic ratings comparable to traditional materials. This article, invited by the RIA editorial board, is not an original study. Instead, it synthesises existing research by reanalysing and integrating the data from multiple studies using a single, unified methodology.

References (including DOI)

  1. F. Asdrubali, S. Schiavoni, K.V. Horoshen-kov, A Review of Sustainable Materials for Acoustic Applications, Building Acoustics 19 (2012) 283–311. https://doi.org/10.1260/1351-010X.19.4.283.
  2. F. Asdrubali, F. D’Alessandro, S. Schiavoni, A review of unconventional sustainable building insulation materials, Sustainable Materials and Technologies 4 (2015) 1–17. https://doi.org/10.1016/j.susmat.2015.05.002.
  3. J. Zach, J. Hroudová, A. Korjenic, Envi-ronmentally efficient thermal and acous-tic insulation based on natural and waste fibers: Environmentally efficient insula-tions based on natural and waste fibers, J. Chem. Technol. Biotechnol. 91 (2016) 2156–2161. https://doi.org/10.1002/jctb.4940.
  4. D. Kumar, M. Alam, P.X.W. Zou, J.G. San-jayan, R.A. Memon, Comparative analysis of building insulation material properties and performance, Renewable and Sustainable Energy Reviews 131 (2020) 110038. https://doi.org/10.1016/j.rser.2020.110038.
  5. S. Islam, G. Bhat, Environmentally-friendly thermal and acoustic insulation materials from recycled textiles, Journal of Environmental Management 251 (2019) 109536. https://doi.org/10.1016/j.jenvman.2019.109536.
  6. F. Ye, H. Wei, Y. Xiao, U. Berardi, G. Quaranta, C. Demartino, Bio-based insulation materials in sustainable constructions: A review of environmental, thermal and acoustic insulation, durability, and mechanical performances, Renewable and Sustainable Energy Reviews 223 (2025) 115872. https://doi.org/10.1016/j.rser.2025.115872.
  7. P. Glé, E. Gourdon, L. Arnaud, Acoustical properties of materials made of vegeta-ble particles with several scales of porosi-ty, Applied Acoustics 72 (2011) 249–259. https://doi.org/10.1016/j.apacoust.2010.11.003.
  8. U. Berardi, G. Iannace, Acoustic characterization of natural fibers for sound absorption applications, Building and Environment 94 (2015) 840–852. https://doi.org/10.1016/j.buildenv.2015.05.029.
  9. K.H. Or, A. Putra, M.Z. Selamat, Oil palm empty fruit bunch fibres as sustainable acoustic absorber, Applied Acoustics 119 (2017) 9–16. https://doi.org/10.1016/j.apacoust.2016.12.002.
  10. A. Putra, K.H. Or, M.Z. Selamat, M.J.M. Nor, M.H. Hassan, I. Prasetiyo, Sound absorption of extracted pineapple-leaf fibres, Applied Acoustics 136 (2018) 9–15. https://doi.org/10.1016/j.apacoust.2018.01.029.
  11. A. Santoni, P. Bonfiglio, P. Fausti, C. Marescotti, V. Mazzanti, F. Mollica, F. Pompoli, Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres, Applied Acoustics 150 (2019) 279–289. https://doi.org/10.1016/j.apacoust.2019.02.022.
  12. P. Soltani, E. Taban, M. Faridan, S.E. Samaei, S. Amininasab, Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber, Applied Acoustics 157 (2020) 106999. https://doi.org/10.1016/j.apacoust.2019.106999.
  13. F. Pompoli, Acoustical Characterization and Modeling of Sustainable Posidonia Fibers, Applied Sciences 13 (2023) 4562. https://doi.org/10.3390/app13074562.
  14. ISO 10534-2: Acoustics — Determination of acoustic properties in impedance tubes Part 2: Two-microphone technique for normal sound absorption coefficient and normal surface impedance, (2023).
  15. ISO 9053-1: Acoustics — Determination of airflow resistance Part 1: Static airflow method, (2018).
  16. ISO 9053-2: Acoustics — Determination of airflow resistance. Part 2: Alter-nating airflow method, (2020).
  17. Y. Champoux, M.R. Stinson, G.A. Dai-gle, Air-based system for the measurement of porosity, The Journal of the Acoustical Society of America 89 (1991) 910–916. https://doi.org/10.1121/1.1894653.
  18. P. Leclaire, O. Umnova, K.V. Horoshenkov, L. Maillet, Porosity measurement by comparison of air volumes, Review of Scientific Instruments 74 (2003) 1366–1370. https://doi.org/10.1063/1.1542666.
  19. Y. Salissou, R. Panneton, Pressure/mass method to measure open porosity of porous solids, Journal of Applied Physics 101 (2007) 124913. https://doi.org/10.1063/1.2749486.
  20. R.J.S. Brown, Connection between formation factor for electrical resistivity and fluid‐solid coupling factor in Biot’s equations for acoustic waves in fluid‐filled porous media, GEOPHYSICS 45 (1980) 1269–1275. https://doi.org/10.1190/1.1441123.
  21. D.L. Johnson, T.J. Plona, C. Scala, F. Pasierb, H. Kojima, Tortuosity and Acoustic Slow Waves, Phys. Rev. Lett. 49 (1982) 1840–1844. https://doi.org/10.1103/PhysRevLett.49.1840.
  22. J.F. Allard, B. Castagnede, M. Henry, W. Lauriks, Evaluation of tortuosity in acoustic porous materials saturated by air, Review of Scientific Instruments 65 (1994) 754–755. https://doi.org/10.1063/1.1145097.
  23. Ph. Leclaire, L. Kelders, W. Lauriks, M. Melon, N. Brown, B. Castagnède, Determination of the viscous and thermal characteristic lengths of plastic foams by ultrasonic measurements in helium and air, Journal of Applied Physics 80 (1996) 2009–2012. https://doi.org/10.1063/1.363817.
  24. Z.E.A. Fellah, S. Berger, W. Lauriks, C. Depollier, C. Aristégui, J.-Y. Chapelon, Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence, The Journal of the Acoustical Society of America 113 (2003) 2424–2433. https://doi.org/10.1121/1.1567275.
  25. O. Umnova, K. Attenborough, H.-C. Shin, A. Cummings, Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials, Applied Acoustics 66 (2005) 607–624. https://doi.org/10.1016/j.apacoust.2004.02.005.
  26. R. Panneton, X. Olny, Acoustical determination of the parameters governing viscous dissipation in porous media, The Journal of the Acoustical Society of America 119 (2006) 2027–2040. https://doi.org/10.1121/1.2169923.
  27. X. Olny, R. Panneton, Acoustical determination of the parameters governing thermal dissipation in porous media, The Journal of the Acoustical Society of America 123 (2008) 814–824. https://doi.org/10.1121/1.2828066.
  28. J.-P. Groby, E. Ogam, L. De Ryck, N. Sebaa, W. Lauriks, Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients, The Journal of the Acoustical Society of America 127 (2010) 764–772. https://doi.org/10.1121/1.3283043.
  29. P. Bonfiglio, F. Pompoli, Inversion Problems for Determining Physical Parameters of Porous Materials: Overview and Comparison Between Different Methods, Acta Acustica United with Acustica 99 (2013) 341–351. https://doi.org/10.3813/AAA.918616.
  30. L. Jaouen, E. Gourdon, P. Glé, Estimation of all six parameters of Johnson-Champoux-Allard-Lafarge model for acoustical porous materials from impedance tube measurements, The Journal of the Acoustical Society of America 148 (2020) 1998–2005. https://doi.org/10.1121/10.0002162.
  31. F. Chevillotte, C. Perrot, R. Panneton, Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams, The Journal of the Acoustical Society of America 128 (2010) 1766–1776. https://doi.org/10.1121/1.3473696.
  32. M. He, C. Perrot, J. Guilleminot, P. Leroy, G. Jacqus, Multiscale prediction of acoustic properties for glass wools: Computational study and experimental validation, The Journal of the Acoustical Society of America 143 (2018) 3283–3299. https://doi.org/10.1121/1.5040479.
  33. F. Pompoli, P. Bonfiglio, Definition of analytical models of non-acoustical parameters for randomly-assembled symmetric and asymmetric radii distribution in parallel fiber structures, Applied Acoustics 159 (2020) 107091. https://doi.org/10.1016/j.apacoust.2019.107091.
  34. T.G. Zieliński, R. Venegas, C. Perrot, M. Červenka, F. Chevillotte, K. Attenborough, Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media, Journal of Sound and Vibration 483 (2020) 115441. https://doi.org/10.1016/j.jsv.2020.115441.
  35. E. Di Giulio, C. Perrot, R. Dragonetti, Transport parameters for sound propagation in air saturated motionless porous materials: A review, International Journal of Heat and Fluid Flow 108 (2024) 109426. https://doi.org/10.1016/j.ijheatfluidflow.2024.109426.
  36. A. Santoni, F. Pompoli, C. Marescotti, P. Fausti, Characterization of fibrous media transport parameters from multi-compression-ratio measurements of normal incidence sound absorption, The Journal of the Acoustical Society of Amer-ica 157 (2025) 1185–1201. https://doi.org/10.1121/10.0035847.
  37. ISO 354: Acoustics — Measurement of sound absorption in a reverberation room, (2003).
  38. ISO 11654: Acoustics — Sound absorbers for use in buildings — Rating of sound absorption, (1997).
  39. M.E. Delany, E.N. Bazley, Acoustical properties of fibrous absorbent materials, Applied Acoustics 3 (1970) 105–116. https://doi.org/10.1016/0003-682X(70)90031-9.
  40. Y. Miki, Acoustical properties of porous materials. Modifications of Delany-Bazley models., J. Acoust. Soc. Jpn. (E), J Acoust Soc Jpn E 11 (1990) 19–24. https://doi.org/10.1250/ast.11.19.
  41. D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech. 176 (1987) 379–402. https://doi.org/10.1017/S0022112087000727.
  42. Y. Champoux, J.-F. Allard, Dynamic tortuosity and bulk modulus in air-saturated porous media, Journal of Ap-plied Physics 70 (1991) 1975–1979. https://doi.org/10.1063/1.349482.
  43. D. Lafarge, P. Lemarinier, J.F. Allard, V. Tarnow, Dynamic compressibility of air in porous structures at audible frequencies, The Journal of the Acoustical Society of America 102 (1997) 1995–2006. https://doi.org/10.1121/1.419690.
  44. S.R. Pride, F.D. Morgan, A.F. Gangi, Drag forces of porous-medium acoustics, Phys. Rev. B 47 (1993) 4964–4978. https://doi.org/10.1103/PhysRevB.47.4964.
  45. A. Tamayol, M. Bahrami, Transverse permeability of fibrous porous media, Phys. Rev. E 83 (2011) 046314. https://doi.org/10.1103/PhysRevE.83.046314.
  46. G.E. Archie, The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics, Transactions of the AIME 146 (1942) 54–62. https://doi.org/10.2118/942054-G.
  47. J.-F. Allard, N. Atalla, Propagation of sound in porous media: modelling sound absorbing materials, 2nd ed, Wiley, Hoboken, N.J, 2009.
  48. M. Villot, C. Guigou, L. Gagliardini, PREDICTING THE ACOUSTICAL RADIA-TION OF FINITE SIZE MULTI-LAYERED STRUCTURES BY APPLYING SPATIAL WIN-DOWING ON INFINITE STRUCTURES, Journal of Sound and Vibration 245 (2001) 433–455. https://doi.org/10.1006/jsvi.2001.3592.
  49. D. Rhazi, N. Atalla, A simple method to account for size effects in the transfer matrix method, The Journal of the Acoustical Society of America 127 (2010) EL30–EL36. https://doi.org/10.1121/1.3280237.
  50. P. Bonfiglio, F. Pompoli, R. Lionti, A reduced-order integral formulation to account for the finite size effect of isotropic square panels using the transfer matrix method, The Journal of the Acoustical Society of America 139 (2016) 1773–1783. https://doi.org/10.1121/1.4945717.
  51. A. Santoni, P. Bonfiglio, P. Fausti, F. Pompoli, Computation of the Alpha Cabin Sound Absorption Coefficient by Using the Finite Transfer Matrix Method (FTMM): Inter-Laboratory Test on Porous Media, Journal of Vibration and Acoustics 143 (2021). https://doi.org/10.1115/1.4048395.
  52. A. Santoni, P. Bonfiglio, A. Magnani, C. Marescotti, F. Pompoli, P. Fausti, A hybrid approach for modelling the acoustic properties of recycled fibre mixtures for automotive applications, Applied Acoustics 182 (2021) 108272. https://doi.org/10.1016/j.apacoust.2021.108272.