Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Articoli Scientifici

V. 48 N. 1 (2024)

Associazione di parametri psicoacustici con parole italiane descrittive di attributi sonori percepiti

DOI
https://doi.org/10.3280/ria1-2024oa17236
Inviata
6 febbraio 2024
Pubblicato
22-07-2024

Abstract

Psychoacoustic parameters, being closely related to sound perception, are usually applied in product sound quality and, recently, also in environmental soundscape analysis or at workplace, to investigate its potential in describing acoustic comfort.

Lexicons of descriptive words of perceptual sound attributes are available in literature, but the language is often a crucial issue, being the translation not always easy to keep the original meaning.

This paper describes two different preliminary experiments dealing with such words in Italian and the evaluation of their association with psychoacoustic parameters. For these experiments, 12 sounds recorded in three different environments (at workplace, in nature and in the community) were selected and processed to determine some psychoacoustic parameters. These sounds were randomly played in a quiet room at the same equivalent level Leq (dB) by headphone in the two experiments with the participation of two different groups of listeners, each formed by 24 subjects. Multivariate statistical analysis and correlation have been applied to compare their responses with some acoustic and psychoacoustic descriptors.

 

I parametri psicoacustici, essendo correlati con la percezione del suono, sono di solito applicati alla qualità sonora del prodotto e, recentemente, anche nell’analisi del paesaggio sonoro ambientale o nell’esposizione sonora lavorativa, con l’intento di valutarne il loro potenziale nella descrizione del comfort acustico.

Lessici di parole descrittive della percezione di attributi sonori sono disponibili in letteratura, ma la lingua utilizzata è un fattore rilevante in quanto la traduzione da altre lingue, la più frequente è l’Inglese, non sempre è tale da mantenere il significato originario.

Questo articolo descrive due esperimenti preliminari riguardanti l’uso di queste parole nella lingua italiana e la loro associazione con i parametri psicoacustici. A tale scopo, 12 suoni registrati in tre diversi ambienti (in ambiente di lavoro, in natura e nella comunità) sono stati selezionati ed elaborati per determinarne alcuni parametri psicoacustici. Questi suoni sono stati riprodotti allo stesso livello equivalente Leq (dB) in cuffia con modalità casuale in una stanza quieta in entrambi i due esperimenti con la partecipazione di due differenti gruppi, ciascuno composto da 24 ascoltatori. Analisi statistiche sui descrittori acustici e i responsi soggettivi sono state applicate per valutare la loro associazione.

Riferimenti bibliografici (comprensivi di DOI)

  1. D.E. Beaton, C. Bombardier, F. Guillemin, M.B. Ferraz, Guide-lines for the process of cross-cultural adaptation of self-report measures, Spine 2000, 25, pp 3186–91, DOI: 10.1097/00007632-200012150-00014.
  2. F. Aletta et al., Soundscape assessment: towards a validated translation of perceptual attributes in different languages, Proc. 49th InterNoise, Seoul, Korea, 23-26 August 2020.
  3. ISO/TS 12913-2:2018, Acoustics-Soundscape Part 2: Data col-lection and reporting requirements.
  4. G.E. Puglisi, L. Shtrepi, M.C. Masoero, A. Astolfi, Evaluating soundscape in the Italian language: Validation of the translation of the English standardized perceptual attributes of the ISO/TS 12913-2:2018 and comparison with other Romance languages, Applied Acoustics 222, 11050, 2024, DOI: 10.1016/
  5. j.apacoust.2024.110050.
  6. H.T. Lawless, H. Heymann, Sensory evaluation of food - Princi-ples and practices, 2010, Springer.
  7. T.H. Pedersen, N. Zacharov, How many psycho-acoustic attrib-utes are needed?, Proc. Acoustics '08, Paris, France, 29 June-4 July 2008.
  8. N. Zacharov, T.H. Pedersen, C. Pike, A common lexicon for spa-tial sound quality assessment – latest developments, 2016 Eighth International Conference on Quality of Multimedia Expe-rience (QoMEX), Lisbon, Portugal, 2016, DOI: 10.1109/QoMEX.2016.7498967.
  9. T.H. Pedersen, N. Zacharov, The development of a sound wheel for reproduced sound, 138th Conv. Audio Eng. Soc., 2015, War-saw, Poland, 7-10 May.
  10. C. Guastavino, Everyday sound categorization, in Computation-al Analysis of Sound Scenes and Events, Eds T. Virtanen, M. D. Plumbley, D. Ellis, New York, NY: Springer International Publish-ing, 2018, pp. 183–213, DOI: 10.1007/978-3-319-63450-0.
  11. T.H. Pedersen, Lexicon of Sound-Describing Words – Version 1, Delta Report AV 11/05 THP, 2008.
  12. B.L. Giordano, R. de Miranda Azevedo, Y. Plasencia-Calaña, E. Formisano, M. Dumontier, What do we mean with sound se-mantics, exactly? A survey of taxonomies and ontologies of everyday sounds, Front. Psychol., 13, 2022, DOI: 10.3389/fpsyg.2022.964209
  13. A. Magrini, G. Di Feo, A. Cerniglia, Questionnaire analysis survey for acoustic investigation-Preliminary considerations, Proc. 48th InterNoise, Madrid, Spain, 16-19 June 2019.
  14. R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2021.
  15. H. Fastl, E. Zwicker, Psychoacoustics. Facts and Models, Spring-er Berlin, Heidelberg, 2007.
  16. DIN 45631/A1:2010-03, Calculation of loudness level and loud-ness from the sound spectrum - Zwicker method - Amendment 1: Calculation of the loudness of time-variant sound.
  17. DIN 45692:2009-08, Measurement technique for the simula-tion of the auditory sensation of sharpness.
  18. R. Sottek, J. Becker, T. Lobato, Progress in Roughness Calcula-tion, Proc. 49th InterNoise, Seoul, South Korea, 23-26 August 2020.
  19. H. Fastl, E. Zwicker, Fluctuation Strength, Chap. 10 in Psychoa-coustics. Facts and Models, Springer Berlin, Heidelberg, 2007.
  20. ECMA-418-2, Psychoacoustic metrics for ITT equipment — Part 2 (models based on human perception), 2020.
  21. R. Sottek, T. Moll, Perception and modeling of impulsive sounds, Proc. Euronoise 2015, Maastricht, Netherlands, 31 May-3 June 2015.
  22. R. Sottek, K. Genuit, Models of signal processing in human hear-ing, AEU - International Journal of Electronics and Communica-tions, 59(3), pp. 157-165, 2005.
  23. R. Zeelenberg, D. Pecher, A method for simultaneously coun-terbalancing condition order and assignment of stimulus mate-rials to conditions, Behav. Res., 47 (127), pp. 127-133, 2015.
  24. A. Magrini, G. Di Feo, A. Cerniglia, Acoustic Quality of the Ex-ternal Environment: Indications on Questionnaire Structure for Investigating Subjective Perception, J. Otorhinolaryngol. Hear. Balance Med., 4, 4, 2023, DOI: 10.3390/ohbm4010004.
  25. U. Ayr, E. Cirillo, F. Martellotta, Disturbo da rumore. Verifica sperimentale di una scala per la valutazione soggettiva, CDA, Sezione Ricerca, Settembre 2000, pp. 925-932.
  26. D. Dal Palù, B. Lerma, L. Actis Grosso, L. Shtrepi, M. Gasparini, C. De Giorgi, A. Astolfi, Sensory evaluation of the sound of roll-ing office chairs: an exploratory study for sound design, Ap-plied Acoustics 130, pp. 195-203, 2018, DOI: 10.1016/j.apacoust.2017.09.027.
  27. C.E. Osgood, The nature and measurement of meaning. Psy-chol. Bull. 49, pp. 197–237, 1952.
  28. J.H. Ward Jr, Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical Association, 58, pp. 236–244, 1963, DOI: 10.1080/01621459.1963.10500845
  29. A. Can, P. Aumond, S. Michel, B. de Coensel, C. Ribeiro, D. Bot-teldooren, C. Lavandier, Comparison of noise indicators in an urban context, Proc. 45th InterNoise, Hamburg, Germany, 21-24 August 2016.
  30. I.T. Jolliffe, J. Cadima, Principal component analysis: a review and recent developments, Phil. Trans. R. Soc. A, 374, 20150202, 2016, DOI: 10.10980/rsta.2015.202.
  31. S. Lê, J. Josse, F. Husson, FactoMineR: A Package for Multivari-ate Analysis.” Journal of Statistical Software, 25, pp. 1–18, 2008, DOI: 10.18637/jss.v025.i01.

Metriche

Viste PDF
42