Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Articoli Scientifici

V. 47 N. 1 (2023): Special Issue Acoustics of Ancient Theatres

Simulazione acustica di spazi antichi: problematiche e soluzioni

  • Francesco Martellotta
DOI
https://doi.org/10.3280/ria1-2023oa14983
Inviata
21 novembre 2022
Pubblicato
16-11-2023

Abstract

La ricostruzione acustica di spazi antichi, esistenti in condizioni molto diverse o non più esistenti, sta diventando un’attività sempre più diffusa in diversi campi di ricerca. La disponibilità di diversi software ha portato la simulazione acustica fuori dai laboratori specializzati e ha permesso a un pubblico molto più ampio di sfruttare le loro potenzialità. Tuttavia, come qualsiasi altro strumento di simulazione, l’affidabilità dei risultati deve essere attentamente valutata in quanto dipende da una serie di fattori relativi alla corretta conoscenza del processo di simulazione e delle caratteristiche dell’edificio da simulare.

Riferimenti bibliografici (comprensivi di DOI)

  1. F. Martellotta, Caveats and pitfalls in acoustic simulation of non-existing buildings, Proc. 2nd International Symposium on The Acoustics of Ancient Theatres (SAT) - 6-8 July 2022, Verona
  2. A. Krokstad, S. Strøm, and S. Sørsdal, Calculating the acoustical room response by the use of a ray tracing technique, J. Sound Vib. 8(1), 118–125. 1968. doi.org/10.1016/0022-460X(68)90198-3
  3. U. P. Svensson and U. Kristiansen, Computational modelling and simulation of acoustic spaces, in Proc. of the AES 22nd Conf. on Virtual, Synthetic Entertainment Audio, Es-poo, Finland (2002), pp. 11–30.
  4. M. Vorlander, International round robin on room acoustical computer simulations, in Pro-ceedings of the 15th International Congress on Acoustics, Trondheim, Norway (1995), pp. 689–692.
  5. I. Bork, A comparison of room simulation software—The 2nd round robin on room acoustical computer simulation, Acta Acust. Acust. 86(6), 943–956 (2000).
  6. I. Bork, Report on the 3rd round robin on room acoustical computer simulation—Part II: Calculations, Acta Acust. Acust. 91(4), 753–763, 2005.
  7. M. Vorlander, Computer simulations in room acoustics: Concepts and uncertainties, J. Acoust. Soc. Am. 133(3), 1203–1213, 2013. doi.org/10.1121/1.4788978
  8. Savioja, L., & Svensson, P. Overview of geometrical room acoustic modeling techniques. J. Acoust. Soc.Am., 138(2), 708-730, 2015. doi.org/10.1121/1.4926438
  9. D. Botteldooren, Finite-difference time-domain simulation of low-frequency room acoustic problems, J. Acoust. Soc. Am., 98, (6), 3302-3308, 1995. doi.org/10.1121/1.413817
  10. K. Kowalczyk and M. van Walstijn, Room acoustics simulation using 3-D compact explicit FDTD schemes, IEEE Trans. Audio Speech Lang. Process. 19(1), 34–46, 2011. DOI: 10.1109/TASL.2010.2045179
  11. B. Hamilton, C. J. Webb, N. Fletcher and S. Bilbao, Finite difference room acoustics simulation with general impedance boundaries and viscothermal losses in air: Parallel im-plementation on multiple GPUs, In Proc. ISRA, 52, 2016.
  12. G. Fratoni, B. Hamilton and D. D’Orazio, Rediscovering the Acoustics of a XII-Century Rotunda through FDTD Simulation, 2021 Immersive and 3D Audio: from Architecture to Automotive (I3DA), 2021, pp.1-8. DOI: 10.1109/I3DA48870.2021.9610967
  13. F. Martellotta, Identifying acoustical coupling by measurements and prediction-models for St. Peter’s Basilica in Rome, J. Acoust. Soc. Am. 126 1175:1186, 2009.
  14. S. Prepelită, M. Geronazzo, F. Avanzini, and L. Savioja, Influence of voxelization on fi-nite difference time domain simulations of head-related transfer functions, J. Acoust. Soc. Am. 139(5), 2489–2504, 2016. doi.org/10.1121/1.4947546
  15. U. P. Svensson, R. I. Fred, and J. Vanderkooy, An analytic secondary source model of edge diffraction impulse responses, J. Acoust. Soc. Am. 106, 2331–2344, 1999. doi.org/10.1121/1.428071
  16. T. Lokki, V. Pulkki, P. T. Calamia, Measurement and Modeling of Diffraction From an Edge of a Thin Panel, Applied Acoustics 69, 824-832, 2008, doi.org/10.1016/j.apacoust.2007.05.005
  17. F. Martellotta, M. D’Alba, U. Ayr, Acoustic problems in a large hemispherical concrete church, Proc. EuroNoise 2018, Crete 27-31 May 2018
  18. ISO 354:2003. Acoustics: Measurement of Sound Absorption in a Reverberation Room. ISO, Geneva, 2003
  19. ISO 10534-2:1998, Acoustics — Determination of sound absorption coefficient and im-pedance in impedance tubes — Part 2: Transfer-function method, ISO, Geneva,1998
  20. Rhazi, D., Atalla, N., A simple method to account for size effects in the transfer matrix method. JASA Express Letters., 127(2), EL30 – EL36, 2010, doi.org/10.1121/1.3280237
  21. H. Autio, N.G. Vardaxis, D.B. Hagberg, The Influence of Different Scattering Algo-rithms on Room Acoustic Simulations in Rectangular Rooms. Buildings 11, 414, 2021. doi.org/10.3390/buildings11090414
  22. ISO 17497-1:2004, Acoustics -- Sound-scattering properties of surfaces -- Part 1: Meas-urement of the random-incidence scattering coefficient in a reverberation room, ISO, Ge-neva, 2004
  23. T.J. Cox, P. D’Antonio, Acoustic Absorbers and Diffusers, 3rd ed.; Taylor & Francis Group, USA, 2017.
  24. M. Vorlander, Auralization. Fundamentals of Acoustics, Modelling, Simulation, Algo-rithms and Acoustic Virtual Reality, 1st ed. (Springer, Berlin, 2008).
  25. Redondo, J.; Picó, R.; Avis, M. R.; Cox, T. J., Prediction of the Random-Incidence Scat-tering Coefficient Using a FDTD Scheme, Acta Acustica united with Acustica, 95(6), 1040-1047, 2009, doi.org/10.3813/AAA.918236
  26. Cingolani, M.; Fratoni, G.; Barbaresi, L.; D’Orazio, D.; Hamilton, B.; Garai, M. A Trial Acoustic Improvement in a Lecture Hall with MPP Sound Absorbers and FDTD Acous-tic Simulations. Appl. Sci. 2021, 11, 2445, doi.org/10.3390/app11062445
  27. L. Álvarez-Morales, F. Martellotta, A geometrical acoustic simulation of the effect of oc-cupancy and source position in historical churches. Appl Acoust 91, 47-58, 2015, doi.org/10.1016/j.apacoust.2014.12.004
  28. L. Alvarez-Morales, F. Martellotta, Using 3D sound field information as an instrument to improve the accuracy of virtual acoustic models, Proc. 45º Congreso Español de Acústica, 8º Congreso Ibérico de Acústica, European Symposium On Smart Cities And Envi-ronmental Acoustics
  29. B. N. J. Postma and B. F. G. Katz , Perceptive and objective evaluation of calibrated room acoustic simulation auralizations, J. Acoust. Soc. Am. 140, 4326-4337, 2016, doi.org/10.1121/1.4971422
  30. ISO 13472-1:2022, Acoustics — Measurement of sound absorption properties of road surfaces in situ — Part 1: Extended surface method, ISO, Geneva, 2022
  31. F. Martellotta and L. Pon , On-site acoustical characterization of Baroque tapestries: The Barberini collection at St. John the Divine Cathedral, J. Acoust. Soc. Am. 144, 1615-1626, 2018, doi.org/10.1121/1.5055561

Metriche

Caricamento metriche ...