Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Articoli/Articles

V. 15 N. 2 (2024): Intelligenza Artificiale nella scuola e nella formazione universitaria. Rischi e opportunità

L’apprendimento adattivo e il suo ruolo nell’inclusività educativa

DOI
https://doi.org/10.3280/ess2-2024oa18475
Inviata
10 settembre 2024
Pubblicato
31-01-2025

Abstract

L’apprendimento adattivo, sostenuto dall’intelligenza artificiale (IA), rappresenta un’importante innovazione nel campo educativo, con un impatto significativo sull’inclusività. Questo approccio permette di personalizzare l’esperienza di apprendimento adattandosi in tempo reale alle esigenze individuali degli studenti, rispondendo a difficoltà specifiche e ottimizzando l’interazione con i contenuti educativi. Il contributo esamina i principali punti di forza dell’integrazione dell’IA nell'educazione, con un focus particolare sulla possibilità di personalizzare i percorsi di apprendimento in base alle esigenze individuali degli studenti con bisogni educativi speciali e provenienti da contesti socioeconomici svantaggiati. Il ruolo degli insegnanti nella co-progettazione educativa è centrale in questo processo, poiché la loro esperienza e comprensione delle necessità degli studenti è fondamentale per l’ottimizzazione dell’uso delle tecnologie adattive. Il contributo affronterà inoltre le sfide critiche relative all’integrazione dell’IA nei sistemi educativi, come l’equità nell’accesso alle tecnologie, la formazione degli insegnanti per l’uso efficace di strumenti adattivi e le questioni etiche legate alla privacy dei dati degli studenti

Riferimenti bibliografici

  1. Ainscow M., Booth T. (2006). Improving Schools, Developing Inclusion. Routledge.
  2. Ainscow M., Miles S. (2008). Making Education for All Inclusive: Where Next?. Prospects, 38(1): 15-34.
  3. Ainscow M., Miles S., and Dyson A. (2008). Making Sense of Inclusive Education: Key Issues and Debates. London: Routledge.
  4. Baker R. S. (2016). Stupid tutoring systems, intelligent humans. International Journal of Artificial Intelligence in Education, 26(2): 600-614.
  5. Binns R. (2018). Ethical issues in the use of big data in education. In M. J. K. Leung (Ed.), Big Data in Education: A Critical Overview (pp. 183-202). Springer.
  6. Booth T., Ainscow M. (2011). The Index for Inclusion: Developing Learning and Participation in Schools. Centre for Studies on Inclusive Education.
  7. Braman S. (2009). The Information Revolution and the Digital Divide: Implications for Policy and Society. Lawrence Erlbaum Associates.
  8. Conati C., Kardan S. (2013). AI in Education: Adaptive Learning Systems. In J. C. Lester, R. M. Vicari, and F. P. Santos (Eds.), Proceedings of the International Conference on Artificial Intelligence in Education (pp. 389-398).
  9. Ertmer P. A. (1999). Addressing First- and Second-Order Barriers to Change: Strategies for Technology Integration. Educational Technology Research and Development, 47(4): 47-61.
  10. Florian L., Black-Hawkins K. (2011). Exploring Inclusive Pedagogy. Cambridge Journal of Education, 41(2): 173-190.
  11. Freire P. (1970). Pedagogy of the Oppressed. New York: Herder and Herder.
  12. Gurung R. A. R., Schwartz M. (2020). Ethics of AI in Education: Designing for equity and inclusion. Journal of Educational Technology Development and Exchange, 13(1): 1-12.
  13. Guskey T. R. (2002). Professional Development and Teacher Change. Teachers and Teaching: Theory and Practice, 8(3): 381-391.
  14. Holmes W. et al. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. OECD Publishing.
  15. Hattie J., Timperley H. (2007). The Power of Feedback. Review of Educational Research, 77(1): 81-112.
  16. Kolb D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Prentice Hall.
  17. Kessler E., Massey M. (2020). Adaptive Learning and Inclusive Practices. Education-al Technology Research and Development, 68(3): 529-545.
  18. Luckin R., Holmes W., Griffiths M., and Forcier L. B. (2016). Intelligence Unleashed: An Argument for AI in Education. Pearson Education.
  19. OECD (2016). Skills for the Digital Age: The Role of Education and Training. OECD Publishing.
  20. OECD (2020). The Future of Education and Skills 2030: OECD Education Working Paper No. 48. OECD Publishing.
  21. Pane J. F. et al. (2017). Effectiveness of Cognitive Tutor Algebra I at Scale. Journal of Research on Educational Effectiveness, 10(3): 408-433.
  22. Ryan R. M., Deci E. L. (2000). Self-Determination Theory and the Facilitation of In-trinsic Motivation. American Psychologist, 55(1): 68-78.
  23. Selwyn N. (2016). Is Technology Good for Education?. Polity Press.
  24. Slee R. (2011). The Irregular School: Exclusion, Schooling and Inclusive Education. Routledge.
  25. Siemens G. (2004). Connectivism: A Learning Theory for the Digital Age. International Journal of Instructional Technology & Distance Learning, 2(1): 3-10.
  26. Tomlinson C. A. (2001). How to Differentiate Instruction in Mixed-Ability Class-rooms. ASCD.
  27. UNESCO (2020). Inclusion and Education: All Means All. Paris: UNESCO Publishing.
  28. Van Dijk J. (2020). The Digital Divide: How the Internet is Creating a New Class System. SAGE Publications.
  29. Zhou X., Brown D. (2020). The Ethics of AI in Education: Protecting Students’ Privacy and Preventing Bias. Journal of Educational Ethics, 22(1): 23-34.

Metriche

Caricamento metriche ...