Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Articoli Scientifici

2025: Online first

Materiali fonoassorbenti bio-based e a base di scarti

DOI
https://doi.org/10.3280/riaof-2025oa20130
Inviata
14 maggio 2025
Pubblicato
26-09-2025

Abstract

Per contenere l’impatto ambientale derivante dall’uso di risorse non rinnovabili, cresce l’interesse nella ricerca di materie prime alternative per la produzione di pannelli fonoassorbenti sostenibili. In questo ambito, le direttive europee promuovono soluzioni costruttive innovative finalizzate sia alla riduzione dell’impatto ambientale, sia al miglioramento dell’efficienza degli edifici, nuovi ed esistenti. In linea con i principi dell’economia circolare, il presente studio propone un’indagine sperimentale sulle proprietà acustiche, espresse in termini di coefficienti di assorbimento ad incidenza normale e in campo diffuso, di materiali compositi innovativi ottenuti da scarti e prodotti naturali. I risultati mostrano buone performance fonoassorbenti per tutti i campioni testati, con variazioni correlate alle proprietà microstrutturali, come porosità e resistenza al flusso.

 

Riferimenti bibliografici (comprensivi di DOI)

  1. S.V. Joshi, L.T. Drzal, A.K. Mohanty, S. Arora, Are natural fiber composites environmentally superior to glass fiber reinforced composites?, Composites Part A: Applied Science and Manu-facturing 35 (2004) 371–376. https://doi.org/10.1016/j.compositesa.2003.09.016.
  2. T.W. Hesterberg, G.A. Hart, Synthetic Vitreous Fibers: A Review of Toxicology Research and Its Impact on Hazard Classifica-tion, Critical Reviews in Toxicology 31 (2001) 1–53. https://doi.org/10.1080/20014091111668
  3. C. Rubino, M. Bonet Aracil, J. Gisbert-Payá, S. Liuzzi, P. Stefanizzi, M. Zamorano Cantó, F. Martellotta, Composite eco-friendly sound absorbing materials made of recycled textile waste and biopolymers, Materials 12 (2019) 4020. https://doi.org/10.3390/ma12234020
  4. C. Rubino, M. Bonet Aracil, S. Liuzzi, P. Stefanizzi, F. Martellotta, Wool waste used as sustainable nonwoven for building appli-cations, Journal of Cleaner Production 278 (2021) 123905. https://doi.org/10.1016/j.jclepro.2020.123905
  5. C. Rubino, S. Liuzzi, P. Stefanizzi, F. Martellotta, Characterization of sustainable building materials obtained from textile waste: From laboratory prototypes to real-world manufacturing pro-cesses, Journal of Cleaner Production 390 (2023) 136098. https://doi.org/10.1016/j.jclepro.2023.136098
  6. S. Liuzzi, C. Rubino, P. Stefanizzi, F. Martellotta, Performance characterization of broad band sustainable sound absorbers made of almond skins. Materials, 13 (2020) 5474. https://doi.org/10.3390/ma13235474
  7. S. Liuzzi, C. Rubino, F. Martellotta, P. Stefanizzi, C. Casavola, G. Pappalettera, Characterization of biomass-based materials for building applications: The case of straw and olive tree waste. Industrial Crops and Products 147 (2020) 112229. https://doi.org/10.1016/j.indcrop.2020.112229.
  8. F. Martellotta, A. Cannavale, V. De Matteis, U. Ayr, Sustainable sound absorbers obtained from olive pruning wastes and chi-tosan binder. Applied Acoustics 141 (2018) 71-78. https://doi.org/10.1016/j.apacoust.2018.06.022.
  9. C. Rubino, G. C. Lama, S. Liuzzi, F. Martellotta, B. Liguori, F. Re-cupido, L. Verdolotti, L. Sorrentino, Tailoring porosity and acoustic properties in bi-layered diatomite-based foams through multiscale structural approach. Construction and Building Materials 430 (2024) 136480. https://doi.org/10.1016/j.conbuildmat.2024.136480.
  10. S. Liuzzi, C. Rubino, P. Stefanizzi, F. Martellotta, Sustainable materials from waste paper: Thermal and acoustical charac-terization. Applied Sciences 13 (2023) 4710. https://doi.org/10.3390/app13084710.
  11. ISO 10534-2, 1998. Acoustics e Determination of Sound Ab-sorption Coefficient and Impedance in Impedance Tubes e Part 2: Transfer-Function Method, Geneva, Switzerland.
  12. D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permea-bility and tortuosity in fluid-saturated porous media, Journal of Fluid Mechanics 176 (1987) 379e402. https://doi.org/10.1017/S0022112087000727.
  13. J.F. Allard, Y. Champoux, New empirical equation for sound propagation in rigid frame fibrous material. Journal of the Acoustical Society of America 91 (1992) 3346e3353. https://doi.org/10.1121/1.402824.
  14. D. Lafarge, P. Lemarinier, J.F. Allard, V. Tarnow, Dynamic com-pressibility of air in porous structures at audible frequencies, Journal of the Acoustical Society of America 102 (1997) 1995-2006. https://doi.org/10.1121/1.419690
  15. T.J. Cox, P.K. D’Antonio, Acoustic Absorbers and Diffusers, The-ory, Design and Application. Spon Press, London, pp. 141-145, 2004.
  16. Y. Atalla, R. Panneton, Inverse acoustical characterization of open cell porous media using impedance tube measurements. Canadian Acoustics 33 (2005) 11-24. //jcaa.caa-aca.ca/index.php/jcaa/article/view/1711.

Metriche

Caricamento metriche ...