Skip to main navigation menu Skip to main content Skip to site footer

Acoustic Laboratory Tour

Vol. 48 No. 2 (2024)

Acoustic Laboratory Tour: University of Naples Federico II

  • Raffaele Dragonetti
  • Elio Di Giulio
  • Marialuisa Napolitano
  • Rosario Romano
  • Francesco Pompoli
DOI
https://doi.org/10.3280/ria2-2024oa18872
Submitted
novembre 20, 2024
Published
2024-12-18

Abstract

This article presents the Acoustics Laboratory of the Federico II University of Naples, describing its history, structures, instrumentation, research and technological transfer activities and the main collaborations.

References (including DOI)

  1. R. Dragonetti, C. Ianniello, R.A. Romano, The “Teatro di San Carlo” in Naples and its smaller clone “Teatro Verdi” in Salerno, Article in The Journal of the Acoustical Society of America (2008). https://doi.org/10.1121/1.2932948.
  2. R. Dragonetti, M. Ponticorvo, P. Dolce, S. Di Filippo, F. Mercogliano, Pairwise comparison psychoacoustic test on the noise emitted by DC electrical motors, Applied Acoustics 119 (2017) 108-118. https://doi.org/10.1016/J.APACOUST.2016.12.016.
  3. E. Di Giulio, M. Napolitano, R.A. Romano, A. Scofano, R. Dragonetti, INFLUENCE OF MANUFACTURING TECHNOLOGY ON THE ACOUSTIC PERFORMANCE OF METAMATERIALS, (n.d.). https://doi.org/10.61782/fa.2023.1004.
  4. R. Dragonetti, M. Napolitano, S. Di Filippo, R. Romano, Modeling energy conversion in a tortuous stack for thermoacostic applications, Appl Therm Eng 103 (2016) 233-242. https://doi.org/10.1016/J.APPLTHERMALENG.2016.04.076.
  5. E. Di Giulio, F. Auriemma, M. Napolitano, R. Dragonetti, Acoustic and thermoacoustic properties of an additive manufactured lattice structure, J Acoust Soc Am 149 (2021) 3878-3888. https://doi.org/10.1121/10.0005085.
  6. R. Dragonetti, A. Lepore, S. Di Filippo, F. Mercogliano, R.A. Romano, Statistical considerations on stationary-random noise propagating through a solid medium, Https://Doi.Org/10.1177/1077546316662168 24 (2016) 1505-1517. https://doi.org/10.1177/1077546316662168.
  7. Y. Salissou, R. Panneton, O. Doutres, Complement to standard method for measuring normal incidence sound transmission loss with three microphones, J Acoust Soc Am 131 (2012) EL216. https://doi.org/10.1121/1.3681016.
  8. B.H. Song, J.S. Bolton, A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials, J Acoust Soc Am 107 (2000) 1131. https://doi.org/10.1121/1.428404.
  9. R. Dragonetti; C. Ianniello; R. A. Romano, Measurement of the resistivity of porous materials with an alternating air-flow method, J Acoust Soc Am 129 (2011) 753-764.
  10. E. Di Giulio, M. Napolitano, A. Di Meglio, R.A. Romano, R. Dragonetti, Low frequency acoustic method to measure the complex density of porous materials, J Acoust Soc Am 152 (2022) 2220. https://doi.org/10.1121/10.0014762.
  11. M. Napolitano, E. Di Giulio, F. Auriemma, R.A. Romano, R. Dragonetti, Low frequency acoustic method to measure the complex bulk modulus of porous materials, J Acoust Soc Am 151 (2022) 1545–1556. https://doi.org/10.1121/10.0009767.
  12. R. Dragonetti; M. Napolitano; R.A. Romano, A study on the energy and the reflection angle of the sound reflected by a porous material, J Acoust Soc Am 145 (2019), 489–500.
  13. E. Di Giulio, C.T. Nguyen, C. Perrot, R. Dragonetti, Wire mesh stack and regenerator model for thermoacoustic devices, Appl Therm Eng 221 (2023) 119816. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2022.119816.
  14. F. Auriemma, E. Di Giulio, M. Napolitano, R. Dragonetti, Porous Cores in Small Thermoacoustic Devices for Building Applications, Energies 2020, Vol. 13, Page 2941 13 (2020) 2941. https://doi.org/10.3390/en13112941

Metrics

Metrics Loading ...