Skip to main navigation menu Skip to main content Skip to site footer

Scientific papers

Vol. 48 No. 1 (2024)

Machine learning for the separation and measurement of coexisting sound sources in enclosed spaces

DOI
https://doi.org/10.3280/ria1-2024oa17373
Submitted
febbraio 28, 2024
Published
2024-07-22

Abstract

The constant growth of power calculation and data storage focuses the interest on long-term monitoring. Such a large amount of data paves the way for machine learning techniques. Using sophisticated algorithms, usually based on statistics, broadens the analysis capability in complex scenarios. The present work proposes a machine learning-based method to separate, identify, and measure different coexisting sound sources through sound level meters in real-world scenarios. Four case studies show the application of the proposed method. Two case studies concern monitoring university lessons to separate the speech levels of the teacher from the students' chatter. In this way, the focus of students during lessons can be measured. Further, two case studies concern monitoring two offices with multiple workstations to separate noise sources from workers’ speech.

References (including DOI)

  1. IEC 61672-1:2013 | IEC Webstore, (n.d.). https://webstore.iec.ch/publication/5708 (accessed February 20, 2024).
  2. H. Sato, J.S. Bradley, Evaluation of acoustical conditions for speech communication in working elementary school classrooms, The Journal of the Acoustical Society of America 123 (2008) 2064–2077. https://doi.org/10.1121/1.2839283.
  3. M. Hodgson, R. Rempel, S. Kennedy, Measurement and prediction of typical speech and background-noise levels in university classrooms during lectures, The Journal of the Acoustical Society of America 105 (1999) 226–233. https://doi.org/10.1121/1.424600.
  4. D. De Salvio, D. D’Orazio, Effectiveness of acoustic treatments and PA redesign by means of student activity and speech lev-els, Applied Acoustics 194 (2022) 108783. https://doi.org/10.1016/j.apacoust.2022.108783.
  5. K. Hummel, E. Ryherd, X. Cheng, B. Lowndes, Relating clustered noise data to hospital patient satisfaction, The Journal of the Acoustical Society of America 154 (2023) 1239–1247. https://doi.org/10.1121/10.0020760.
  6. D. De Salvio, D. D’Orazio, M. Garai, Unsupervised analysis of background noise sources in active offices, The Journal of the Acoustical Society of America 149 (2021) 4049–4060. https://doi.org/10.1121/10.0005129.
  7. D. De Salvio, M.J. Bianco, P. Gerstoft, D. D’Orazio, M. Garai, Blind source separation by long-term monitoring: A variation-al autoencoder to validate the clustering analysis, The Journal of the Acoustical Society of America 153 (2023) 738–750. https://doi.org/10.1121/10.0016887.
  8. D. De Salvio, G. Fratoni, D. D’Orazio, M. Garai, Assessing human activity noise in workspaces using machine learning and numerical models, INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265 (2023) 5259–5269. https://doi.org/10.3397/IN_2022_0767.
  9. M. Cingolani, D. De Salvio, D. D’Orazio, M. Garai, Clustering analysis of noise sources in healthcare facilities, Applied Acoustics 214 (2023) 109660. https://doi.org/10.1016/j.apacoust.2023.109660.
  10. Y.-J. Choi, Evaluation of acoustical conditions for speech communication in active university classrooms, Applied Acoustics 159 (2020) 107089. https://doi.org/10.1016/j.apacoust.2019.107089.
  11. M.C. Cutler, M.R. Cook, M.K. Transtrum, K.L. Gee, Data-driven decomposition of crowd noise from indoor sporting events, The Journal of the Acoustical Society of America 155 (2024) 962–970. https://doi.org/10.1121/10.0024724.
  12. D. D’Orazio, D. De Salvio, L. Anderlucci, M. Garai, Measuring the speech level and the student activity in lecture halls: Vis-ual- vs blind-segmentation methods, Applied Acoustics 169 (2020) 107448. https://doi.org/10.1016/j.apacoust.2020.107448.
  13. Y. Hasegawa, E. Ryherd, Clustering acoustical measurement data in pediatric hospital units, The Journal of the Acoustical Society of America 148 (2020) 265–277. https://doi. org/10.1121/10.0001584.
  14. M.J. Bianco, P. Gerstoft, J. Traer, E. Ozanich, M.A. Roch, S. Gannot, C.-A. Deledalle, Machine learning in acoustics: Theory and applications, The Journal of the Acoustical Society of America 146 (2019) 3590–3628. https://doi.org/10.1121/1.5133944.
  15. E. Ozanich, A. Thode, P. Gerstoft, L.A. Freeman, S. Freeman, Deep embedded clustering of coral reef bioacoustics, The Journal of the Acoustical Society of America 149 (2021) 2587–2601. https://doi.org/10.1121/10.0004221.
  16. M.J. Bianco, S. Gannot, E. Fernandez-Grande, P. Gerstoft, Semi-Supervised Source Localization in Reverberant Environments With Deep Generative Modeling, IEEE Access 9 (2021) 84956–84970. https://doi.org/10.1109/ACCESS.2021.3087697.
  17. W.F. Jenkins II, P. Gerstoft, M.J. Bianco, P.D. Bromirski, Unsupervised Deep Clustering of Seismic Data: Monitoring the Ross Ice Shelf, Antarctica, Journal of Geophysical Research: Solid Earth 126 (2021) e2021JB021716. https://doi.org/10.1029/2021JB021716.
  18. J. Neri, R. Badeau, P. Depalle, Unsupervised Blind Source Sep-aration with Variational Auto-Encoders, in: 2021 29th Euro-pean Signal Processing Conference (EUSIPCO), IEEE, Dublin, Ire-land, 2021: pp. 311–315. https://doi.org/10.23919/EUSIPCO54536.2021.9616154.
  19. C.C. Aggarwal, C.K. Reddy, eds., Data Clustering: Algorithms and Applications, 1st edition, Chapman and Hall/CRC, Boca Ra-ton, 2013.
  20. C.M. Bishop, N.M. Nasrabadi, Pattern recognition and machine learning, Springer, 2006. https://link.springer.com/book/9780387310732 (accessed February 20, 2024).
  21. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1997) 67–82. https://doi.org/10.1109/4235.585893.
  22. G.E.P. Box, D.R. Cox, An Analysis of Transformations, Journal of the Royal Statistical Society: Series B (Methodological) 26 (1964) 211–243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.
  23. G.J. McLachlan, S.X. Lee, S.I. Rathnayake, Finite Mixture Models, Annual Review of Statistics and Its Application 6 (2019) 355–378. https://doi.org/10.1146/annurev-statistics-031017-100325.
  24. J. Shao, Mathematical statistics, Springer Science & Business Media, 2003.
  25. X.-L. Meng, D. Van Dyk, The EM Algorithm—an Old Folk-song Sung to a Fast New Tune, Journal of the Royal Statistical Society: Series B (Methodological) 59 (1997) 511–567. https://doi.org/10.1111/1467-9868.00082.
  26. T. Caliński, J. Harabasz, A dendrite method for cluster analysis, Communications in Statistics 3 (1974) 1–27. https://doi.org/10.1080/03610927408827101.
  27. D.L. Davies, D.W. Bouldin, A Cluster Separation Measure, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1 (1979) 224–227. https://doi.org/10.1109/TPAMI.1979.4766909.
  28. P.J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics 20 (1987) 53–65. https://doi.org/10.1016/0377-0427(87)90125-7.
  29. R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clusters in a data set via the gap statistic, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63 (2001) 411–423. https://doi.org/10.1111/1467-9868.00293.
  30. UNI 11532-2:2020 - UNI Ente Italiano di Normazione, (n.d.). https://store.uni.com/uni-11532-2-2020 (accessed February 28, 2024).
  31. 2023 ASHRAE Handbook—HVAC Applications | ashrae.org, (n.d.). https://www.ashrae.org/technical-resources/ashrae-handbook/2023-ashrae-handbook-hvac-applications (accessed February 28, 2024).
  32. UNI EN 1793-3:1999 - UNI Ente Italiano di Normazione, (n.d.). https://store.uni.com/uni-en-1793-3-1999 (accessed February 28, 2024).
  33. A. Can, L. Leclercq, J. Lelong, D. Botteldooren, Traffic noise spectrum analysis: Dynamic modeling vs. experimental observations, Applied Acoustics 71 (2010) 764–770. https://doi.org/10.1016/j.apacoust.2010.04.002.
  34. UNI EN ISO 3382-3:2022 - UNI Ente Italiano di Normazione, (n.d.). https://store.uni.com/uni-en-iso-3382-3-2022 (accessed February 28, 2024).
  35. J.H. Rindel, C.L. Christensen, A.C. Gade, Dynamic sound source for simulating the Lombard effect in room acoustic modeling software, in: INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering, 2012: pp. 954–966. https://www.odeon.dk/pdf/C118-IN12_Paper%20209_Rindel_Christensen.pdf (accessed Febru-ary 28, 2024).
  36. G. Leembruggen, J. Verhave, S. Feistel, L. Holtzem, P. Mapp, H. Sato, T. Steinbrecher, S. Van Wijngaarden, The effect on sti results of changes to the male test-signal spectrum, Proc. IOA 38 (2016) 78–87.

Metrics

Metrics Loading ...