Skip to main navigation menu Skip to main content Skip to site footer

Scientific papers

Vol. 48 No. 1 (2024)

Optimizing Thermoacoustic Performance through Innovative Porous Materials: Modeling, Analysis, and Applications

DOI
https://doi.org/10.3280/ria1-2024oa17368
Submitted
febbraio 28, 2024
Published
2024-07-22

Abstract

Human impact and the increasing energy demand urge the adoption of renewable technologies able to convert or recover unused energies, such as industrial or solar waste heat. In this context, thermoacoustics emerges as an effective sustainable solution, utilizing low-temperature sources with eco-friendly fluids, and is advantageous for its low operational and maintenance costs. The core of this technology is the stack, which is a porous material essential for the viscous and thermal interactions necessary for energy conversion. This research aims to optimize the efficiency of thermoacoustic engines and refrigerators by employing unconventional stacks such as Tetragonal Pin Arrays, Wire Mesh, and 3D Membrane Foams. Using a finite element numerical method, the transport parameters of the microstructures are characterized to develop predictive models of thermoacoustic behaviour, validated with new acoustic measurement techniques. Finally, a preliminary analysis reveals the potential of these innovative materials in enhancing the performance of thermoacoustic devices.

References (including DOI)

  1. G.W. Swift, Thermoacoustics : a unifying perspective for some engines and refrigerators., Springer, 2018.
  2. G. Chen, L. Tang, B. Mace, Z. Yu, Multi-physics cou-pling in thermoacoustic devices: A review, Renewa-ble and Sustainable Energy Reviews 146 (2021) 111170. https://doi.org/10.1016/J.RSER.2021.111170.
  3. J.F. Allard, N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, John Wiley and Sons, 2009. https://doi.org/10.1002/9780470747339.
  4. J.L. Auriault, C. Boutin, C. Geindreau, Homogeniza-tion of Coupled Phenomena in Heterogenous Me-dia, Homogenization of Coupled Phenomena in Heterogenous Media (2010). https://doi.org/10.1002/9780470612033.
  5. C. Zwikker, C.W. Kosten, Sound Absorbing Materi-als, 1949.
  6. R. Dragonetti, M. Napolitano, S. Di Filippo, R. Roma-no, Modeling energy conversion in a tortuous stack for thermoacostic applications, Appl Therm Eng 103 (2016) 233–242. https://doi.org/10.1016/J.APPLTHERMALENG.2016.04.076.
  7. XXX, C.T. Nguyen, C. Perrot, R. Dragonetti, Wire mesh stack and regenerator model for thermo-acoustic devices, Appl Therm Eng 221 (2023) 119816. https://doi.org/10.1016/J.APPLTHERMALENG.2022.119816.
  8. T.G. Zieliński, N. Dauchez, T. Boutin, M. Leturia, A. Wilkinson, F. Chevillotte, F.X. Bécot, R. Venegas, Taking advantage of a 3D printing imperfection in the development of sound-absorbing materials, Applied Acoustics 197 (2022) 108941. https://doi.org/10.1016/J.APACOUST.2022.108941.
  9. T. Zieliński, R. Venegas, C. Perrot, J. Sound and Vi-bration, 2020, Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media, https://doi.org/10.1016/j.jsv.2020.115441.
  10. M. Napolitano, XXX, F. Auriemma, R.A. Romano, R. Dragonetti, Low frequency acoustic method to measure the complex bulk modulus of porous ma-terials, J Acoust Soc Am 151 (2022) 1545–1556. https://doi.org/10.1121/10.0009767.
  11. XXX, M. Napolitano, A. Di Meglio, R.A. Romano, R. Dragonetti, Low frequency acoustic method to measure the complex density of porous materials, J Acoust Soc Am 152 (2022) 2220. https://doi.org/10.1121/10.0014762.
  12. XXX, F. Auriemma, M. Napolitano, R. Dragonetti, Acoustic and thermoacoustic properties of an addi-tive manufactured lattice structure, J Acoust Soc Am 149 (2021) 3878–3888. https://doi.org/10.1121/10.0005085.
  13. G.W. Swift, R.M. Kenlian, Thermoacoustics in pin-array stacks, Journal of the Acoustical Society of America 94 (1993) 941–943. https://doi.org/10.1121/1.408196.
  14. H.T. Luu, C. Perrot, R. Panneton, Influence of Porosi-ty, Fiber Radius and Fiber Orientation on the Transport and Acoustic Properties of Random Fiber Structures, Acta Acustica United with Acustica 103 (2017) 1050–1063. https://doi.org/10.3813/AAA.919134.
  15. O. Doutres, N. Atalla, K. Dong, A semi-phenomenological model to predict the acoustic behavior of fully and partially reticulated polyure-thane foams, J Appl Phys 113 (2013) 054901. https://doi.org/10.1063/1.4789595.
  16. V. Langlois, A. Kaddami, O. Pitois, C. Perrot, Acous-tics of monodisperse open-cell foam: An experi-mental and numerical parametric study, J Acoust Soc Am 148 (2020) 1767. https://doi.org/10.1121/10.0001995.
  17. B. Ward, J. Clark, Gregory.W. Swift, Design environ-ment for low-amplitude thermoacoustic energy conversion, DELTAEC version 6.2: Users guide, Los Alamos National Laboratory, 2008.

Metrics

Metrics Loading ...