Skip to main navigation menu Skip to main content Skip to site footer

Scientific papers

Vol. 48 No. 1 (2024)

Design of sustainable sound-absorbing panels based on Sargas-sum brown macroalgae

DOI
https://doi.org/10.3280/ria1-2024oa17362
Submitted
febbraio 27, 2024
Published
2024-07-22

Abstract

The brown seaweed Sargassum poses an increasingly significant environmental challenge along the coasts bordering the Atlantic Ocean, particularly in the Caribbean and in the equatorial Africa. Vast floating expanses of this seaweed accumulate in the sea and along the coasts, posing obstacles to fishing and tourism activities. In recent years, efforts have been underway to develop various projects aimed at utilizing these algae as a resource for various industrial applications. In this context, the following article will propose a design approach for sound-absorbing panels made from sun-dried Sargassum. This approach includes an acoustic and physical characterization of the material as a function of its bulk density, an analytical modeling of the acoustic field within the material considered as an equivalent dissipative fluid, and a prototype proposal for modular sound-absorbing panels with a significant design content.

References (including DOI)

  1. T. Yang, L. Hu, X. Xiong, M. Petru, M.T. Noman, R. Mishra, J. Militký, Sound Absorption Properties of Natu-ral Fibers: A Review, Sustainability 12 (2020). https://doi.org/10.3390/su12208477
  2. S. Bousshine, M. Ouakarrouch, A. Bybi, N. Laaroussi, M. Garoum, A. Tilioua, Acoustical and thermal characteri-zation of sustainable materials derived from vegetable, agricultural, and animal fibers, Appl. Acoust. 187 (2022). https://doi.org/10.1016/j.apacoust.2021.108520
  3. X. Tang, X. Liu, X. Yan, Investigation on the Sound Ab-sorption Properties of Waste Green Tea Residues Cov-ered by Woven Fabric, J. Nat. Fibers 19 (2020) 1323–1332. https://doi.org/10.1080/15440478.2020.1764455
  4. A. Putra, K.H. Or, M.Z. Selamat, M.J.M. Nor, M.H. Has-san, I. Prasetiyo, Sound absorption of extracted pineap-ple-leaf fibres, Appl. Acoust. 136 (2018) 9-15. https://doi.org/10.1016/j.apacoust.2018.01.029
  5. S. Liuzzi, C. Rubino, F. Martellotta, P. Stefanizzi, C. Casavola, G. Pappalettera, Characterization of bio-mass-based materials for building applications: The case of straw and olive tree waste, Industrial Crops and Products 147 (2020). https://doi.org/10.1016/j.indcrop.2020.112229
  6. H. Bhingare Nirmala, S. Prakash, An experimental and theoretical investigation of coconut coir material for sound absorption characteristics, Materi-alsToday:Proceedings 43 (2021) 1545-1551. https://doi.org/10.1016/j.buildenv.2016.12.033
  7. G. Iannace, G. Ciaburro, A. Trematerra, Modelling sound absorption properties of broom fibers using arti-ficial neural networks, Appl. Acoust. 163 (2020). https://doi.org/10.1016/j.apacoust.2020.107239
  8. P. Soltani, E. Taban, M. Faridan, S.E. Samaei, S. Amini-nasab, Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber, Appl. Acoust. 157 (2020). https://doi.org/10.1016/j.apacoust.2019.106999
  9. F. Pompoli, Acoustical Characterization and Modeling of Sustainable Posidonia Fibers, Appl.Sci. 13 (2023). https://doi.org/10.3390/app13074562
  10. T. Astrauskas, V. Monin, T. Januševičius, Sound absorp-tion of dried brown, red, green algae, Proceedings of Forum Acusticum 2023, Torino 11-15 Settembre 2023.
  11. D. Robledo, E. Vázquez-Delfín, Y. Freile-Pelegrín, R.M. Vásquez-Elizondo, Z.N. Qui-Minet, A. Salazar-Garibay, Challenges and Opportunities in Relation to Sargassum Events Along the Caribbean Sea, Front. Mar. Sci. (2021). https://doi.org/ 10.3389/fmars.2021.699664
  12. W. Cristoforo Colombo Melczer, Il libro delle profezie, Novecento (1995), ISBN-13: 9788837301514
  13. A. Desrochers, S.-A. Cox, H.A. Oxenford, B. van Tus-senbroek, Pelagic sargassum - A guide to current and potential uses in the Caribbean, FAO (2022), ISBN: 978-92-5-137320-0. https://doi.org/10.4060/cc3147en
  14. J.L. López Miranda, L.B. Celis, M. Estévez, V. Chávez, B.I. van Tussenbroek, A. Uribe-Martínez, E. Cuevas, I. Rosillo Pantoja, L. Masia, C. Cauich-Kantun, R. Silva, Commercial Potential of Pelagic Sargassum spp. in Mexico, Front. Mar. Sci. (2021). https://doi.org/10.3389/fmars.2021.768470
  15. H. Affan, K. Touati, M.-H. Benzaama, D. Chateigner, Y. El Mendili, Earth-Based Building Incorporating Sargas-sum muticum Seaweed: Mechanical and Hygrothermal Performances, Buildings 13 (2023). https://doi.org/10.3390/buildings13040932
  16. SOS Carbon, Copyright © 2022 SOS Carbon - All Rights Reserved. https://soscarbon.com/
  17. Søuld, Copyright © Søuld - All Rights Reserved. https://www.sould.dk/contact
  18. EOACOUSTIC, Copyright © 2018 EOACOUSTIC - All Rights Reserved. https://www.eoacoustic.com/
  19. FREUND – material fur ideen, Copyright © FREUND - All Rights Reserved. https://freundgmbh.com/en/
  20. BAUX AB, Copyright © 2024 BAUX AB - All Rights Re-served. https://www.baux.com/
  21. GENCORK, Copyright © 2022 GENCORK/SOFALCA - All Rights Reserved. https://www.gencork.com/2020/
  22. ISO 10534-2:2023, Acoustics – Determination of acous-tic properties in impedance tubes. Part 2: Two-microphone technique for normal sound absorption co-efficient and normal surface impedance. https://www.iso.org/standard/81294.html
  23. Y. Champoux, M.R. Stinson, G.A. Daigle, Air-based sys-tem for the measurement of porosity, J. Acoust. Soc. Am. 89 (1991). https://doi.org/10.1121/1.1894653
  24. F. Pompoli, P. Bonfiglio, Apparecchiatura per la misura della porosità di materiali a cella aperta, ATTI 34° Con-vegno AIA, Firenze 13-15 Giugno 2007.
  25. F. Pompoli, Acoustical Characterization and Modeling of Sustainable Posidonia Fibers, Appl. Sci. 13 (2023). https://doi.org/10.3390/app13074562
  26. D.L. Johnson, J. Koplik, R. Dashen, Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media, J. Fluid. Mech. 176 (1987), 379–402. https://doi.org/10.1017/S0022112087000727
  27. Y. Champoux, J.F. Allard, Dynamic Tortuosity and Bulk Modulus in Air-Saturated Porous Media, J. Appl. Phys. 70 (1991), 1975–1979. https://doi.org/10.1063/1.349482
  28. P. Bonfiglio, F. Pompoli, Inversion problems for deter-mining physical parameters of porous materials: Over-view and comparison between different methods, Acta Acust. United Acust. 99 (2013), 341–351. https://doi.org/10.3813/AAA.918616
  29. ISO 11654:1997, Acoustics – Sound absorbers for use in buildings - Rating of sound absorption https://www.iso.org/standard/19583.html
  30. A. London, “The determination of reverberant sound absorption coefficient from acoustic impedance meas-urements”, Journal of Acoustical Society of America, 22(2), 263-269 (1950). https://doi.org/10.1121/1.1906600
  31. D. Rhazi, N. Atalla, Transfer matrix modeling of the vibroacoustic response of multi-materials structures under mechanical excitation, J.Sound Vib., 329 (2010), 2532-2546. https://doi.org/10.1121/1.3280237
  32. ISO 354:2003, Acoustics – Measurement of sound ab-sorption in a reverberation room https://www.iso.org/standard/34545.html

Metrics

Metrics Loading ...