Skip to main navigation menu Skip to main content Skip to site footer

Scientific papers

Vol. 47 No. 2 (2023)

The Development of a full scale metamaterial window with optimised ventilation and noise-reduction performance

DOI
https://doi.org/10.3280/ria2-2023oa15499
Submitted
February 27, 2023
Published
2024-02-14

Abstract

Noise reduction is a key factor regarding indoor comfort and energy-smart Architecture and Engineering. In most cases, occupants of the building must choose between a naturally ventilated indoor environment or a quiet one. On the other side, acoustic metamaterials (AMMs) have recently found interesting applications in ventilation ducts by conjugating innovation and sustainability. Previous research conducted by the author has proved AMM-based windows to be a resourceful way to address both natural ventilation and reduce the incoming noise propagation ergonomically (i.e. with design which is optimised for the use of the final user); however, the effective spectral range lacked in the lower frequencies (50-350 Hz). This study aims, therefore to implement the previous model with an ergonomic full-scale acoustic metawindow (AMW). The metamaterial system is enhanced by doubling the original resonating volume and coupling it with a ¾ wavelength resonator. According to the parametric numerical FEM analysis (already assessed in previous experiments) over the opening ratio of the AMW (going from 3 to 33%) the TL related to the window is improved overall by 70% on the frequency range from 50 to 350 Hz. Such results encourage the use of new AMMs ergonomic windows in place of standard ones to achieve both natural ventilation and noise attenuation in the hearing main spectrum, being resourceful for domestic, sanitary, and public applications.

This work is part of the author’s PhD thesis led between Sheffield University (UK) and the A*STAR – Institute of High Performance Computing (SG), which reports a multidisciplinary methodology to implement acoustic metamaterial (AMM) technology in window design to allow noise insulation and natural ventilation simultaneously. The PhD thesis includes results from Social and Natural Sciences, Ergonomic, Numerical, Analytical and Experimental investigations to draw a full-scale window prototype using AMMs. The so-called acoustic metawindow (AMW) allows TL of 10-60dB on a significant frequency range for human hearing (50-5000 Hz) in an open configuration while allowing sufficient natural ventilation. In addition, the AMW is proven to positively impact the indoor environment from both physical and human perception points of view, thanks to its ergonomic and psychoacoustic nature. This PhD project has opened a new AMMs field of investigation that is not limited to noise reduction but also includes outdoor acoustic stimuli optimisation towards a more comprehensive indoor comfort.

References (including DOI)

  1. Harvie-Clark, J.; Chilton, A.; Conlan, N.; Trew, D. Assessing Noise with Provisions for Ventilation and Overheating in Dwellings. J. Build. Serv. Eng. Res. Technol. 2019, 40, 263-273, doi:10.1177/0143624418824232.
  2. Public Health England Review and Update of Occupancy Factors for UK Homes; London, 2018.
  3. Fusaro, G.; Kang, J. Participatory Approach to Draw Ergonomic Criteria for Window Design. Int. J. Ind. Ergon. 2021, 82, doi:10.1016/j.ergon.2021.103098.
  4. Tang, S.K. A Review on Natural Ventilation-Enabling Façade Noise Control Devices for Congested High-Rise Cities. Appl. Sci. 2017, 7, doi:10.3390/app7020175.
  5. Du, L.; Lau, S.K.; Lee, S.E.; Danzer, M.K. Experimental Study on Noise Reduction and Ventilation Performances of Sound- Proofed Ventilation Window. Build. Environ. 2020, 181, 107105, doi:10.1016/j.buildenv.2020.107105.
  6. Lam, B.; Shi, D.; Belyi, V.; Wen, S.; Gan, W.S.; Li, K.; Lee, I. Active Control of Low-Frequency Noise through a Single Top-Hung Window in a Full-Sized Room. Appl. Sci. 2020, 10, doi:10.3390/app10196817.
  7. Asdrubali, F.; Buratti, C. Sound Intensity Investigation of the Acoustics Performances of High Insulation Ventilating Windows Integrated with Rolling Shutter Boxes. Appl. Acoust. 2005, 66, 1088–1101, doi:10.1016/j.apacoust.2005.02.001.
  8. Kang, J.; Brocklesby, M.W. Feasibility of Applying Micro-Perforated Absorbers in Acoustic Window Systems. Appl. Acoust. 2005, 66, 669-689, doi:10.1016/J.APACOUST.2004.06.011.
  9. Wang, X.; Luo, X.; Yang, B.; Huang, Z. Ultrathin and Durable Open Metamaterials for Simultaneous Ventilation and Sound Reduction. Appl. Phys. Lett 2019, 115, 171902, doi:10.1063/1.5121366.
  10. De Salis, M.H.F.; Oldham, D.J.; Sharples, S. Noise Control Strategies for Naturally Ventilated Buildings. Build. Environ. 2002, 37, 471-484, doi:10.1016/S0360-1323(01)00047-6.
  11. Pan, L.; Martellotta, F. A Parametric Study of the Acoustic Performance of Resonant Absorbers Made of Micro-Perforated Membranes and Perforated Panels. Appl. Sci. 2020, 10, doi:10.3390/app10051581.
  12. Carbajo, J.; Ghaffari Mosanenzadeh, S.; Kim, S.; Fang, N.X. Sound Absorption of Acoustic Resonators with Oblique Perforations.
  13. Appl. Phys. Lett. 2020, 116, doi:10.1063/1.5132886.
  14. Zhou, Y.; Li, D.; Li, Y.; Hao, T. Perfect Acoustic Absorption by Subwavelength Metaporous Composite. Appl. Phys. Lett. 2019, 115, doi:10.1063/1.5107439.
  15. Li, D.; Jiang, Z.; Li, L.; Liu, X.; Wang, X.; He, M. Investigation of Acoustic Properties on Wideband Sound-Absorber Composed of Hollow Perforated Spherical Structure with Extended Tubes and Porous Materials. Appl. Sci. 2020, 10, 1-11, doi:10.3390/app10248978.
  16. Yu, X. Design and In-Situ Measurement of the Acoustic Performance of a Metasurface Ventilation Window. Appl. Acoust. 2019, 152, 127–132, doi:10.1016/j.apacoust.2019.04.003.
  17. Kumar, S.; Lee, H.P. Labyrinthine Acoustic Metastructures Enabling Broadband Sound Absorption and Ventilation. Appl. Phys. Lett. 2020, 116, doi:10.1063/5.0004520.
  18. Jiménez, N.; Groby, J.-P.; Pagneux, V.; Romero-García, V. Iridescent Perfect Absorption in Critically-Coupled Acoustic Metamaterials Using the Transfer Matrix Method. Appl. Sci. 2017, 7, 618, doi:10.3390/app7060618.
  19. Zhang, J.; Romero-García, V.; Theocharis, G.; Richoux, O.; Achilleos, V.; Frantzeskakis, D.J. Dark Solitons in Acoustic Transmission Line Metamaterials. Appl. Sci. 2018, 8, doi:10.3390/app8071186.
  20. Shen, C.; Xie, Y.; Li, J.; Cummer, S.A.; Jing, Y. Acoustic Metacages for Sound Shielding with Steady Air Flow. J. Appl. Phys. 2018, 123, 124501, doi:10.1063/1.5009441.
  21. Jiménez, N.; Romero-García, V.; Pagneux, V.; Groby, J.P. Rainbow-Trapping Absorbers: Broadband, Perfect and Asymmetric Sound Absorption by Subwavelength Panels for Transmission Problems. Sci. Rep. 2017, 7, 1-12, doi:10.1038/s41598-017-13706-4.
  22. Kumar, S.; Xiang, T.B.; Lee, H.P. Ventilated Acoustic Metamaterial Window Panels for Simultaneous Noise Shielding and Air Circulation. Appl. Acoust. 2020, 159, 107088, doi:10.1016/j.apacoust.2019.107088.
  23. Shao, C.; Xiong, W.; Long, H.; Tao, J.; Cheng, Y.; Liu, X. Ultra-Sparse Metamaterials Absorber for Broadband Low-Frequency Sound with Free Ventilation. J. Acoust. Soc. Am. 2021, 150, 1044-1056, doi:10.1121/10.0005850.
  24. Lam, B.; Shi, C.; Shi, D.; Gan, W.S. Active Control of Sound through Full-Sized Open Windows. Build. Environ. 2018, 141, 16-27.
  25. Lim, H.S.; Kim, G. The Renovation of Window Mechanism for Natural Ventilation in a High-Rise Residential Building. Int. J. Vent. 2018, 17, 17-30, doi:10.1080/14733315.2017.1351733.
  26. Sorgato, M.J.; Melo, A.P.; Lamberts, R. The Effect of Window Opening Ventilation Control on Residential Building Energy Consumption. Energy Build. 2016, 133, 1-13, doi:10.1016/j.enbuild.2016.09.059.
  27. Fusaro, G.; Yu, X.; Lu, Z.; Cui, F.; Kang, J. A Metawindow with Optimised Acoustic and Ventilation Performance. Appl. Sci. 2021, 11, 1–16, doi:10.3390/ app11073168.
  28. Fusaro, G.; Kang, J.; Asdrubali, F.; Chang, W.-S. Assessment of Acoustic Metawindow Unit through Psychoacoustic Analysis and Human Perception. Appl. Acoust. 2022, doi:https://doi. org/10.1016/j.apacoust.2022.108885.
  29. Fusaro, G.; Yu, X.; Kang, J.; Cui, F. Development of Metacage for Noise Control and Natural Ventilation in a Window System. Appl. Acoust. 2020, 170, 107510, doi:10.1016/j.apacoust.2020.107510.
  30. Fusaro, G.; Yu, X.; Cui, F.; Kang, J. Full-Scale Metamaterial Window for Building Application. In Proceedings of the Inter-Noise 2020; Seoul, 2020.
  31. Yu, X.; Lu, Z.; Liu, T.; Cheng, L.; Zhu, J.; Cui, F. Sound Transmission through a Periodic Acoustic Metamaterial Grating. J. Sound Vib. 2019, 449, 140–156, doi:10.1016/j.jsv.2019.02.042.
  32. Fusaro, G. Development of a Window System with Optimised Ventilation and Noise-Reduction Performance: An Approach Using Metamaterials., University of Sheffield, 2022.

Metrics

Metrics Loading ...