Skip to main navigation menu Skip to main content Skip to site footer


Vol. 14 No. 1 (2023): University didactics, innovation and inclusion. Assessment and feedback

Argument maps as comparator for internal feedback: A Lab for undergraduate students

gennaio 24, 2023


Internal feedback is a construct that become recently relevant for the impact it has on metacognitive and affective-relational regulation, in relation to different skills and learning contexts. In particular, the concept of comparator, i.e. the tools, interventions, or resources that activate internal feedback, requires the support of empirical research. In this contribution, we take as an initial hypothesis that the argument maps’ (AM) visual component, already linked to the development of argumentative and critical thinking skills, could be a generative source of concrete comparison, allowing for a facilitated comprehension and an improvement of the sense-making abilities within argumentative texts. In fact, AMs diagram the logical relationships between different utterances, allowing the learner to keep track and better understand the reasoning chain. To test the above hypothesis, an experimental study was conducted to investigate the extent to which a course with AMs favored students in increasing: a) internal feedback (IF), associated with b) their level of text comprehension (CoT) and hence, c) critical thinking (CT).


  1. Alotto P. (2021). Laboratorio di argomentazione: Guida al critical thinking e all’argument thinking. In A. Sani and A. Linguiti (A cura di), Sinapsi. Storia della filosofia. Protagonisti, percorsi, connessioni. La Scuola editrice.
  2. Colombo A. (2018). Il testo argomentativo: Presupposti pedagogici e modelli di analisi. In A. Colombo (A cura di), Quaderni del Giscel: Vol. 11. I pro e i contro (pp. 59-84). La Nuova Italia.
  3. Crudele F. and Raffaghelli J.E. (2023). Le mappe argomentative come comparator di feedback interno: un laboratorio per studenti universitari [Argument maps as comparator for internal feedback: a Lab for undergraduate students ] [Data set]. Zenodo. DOI: 10.5281/zenodo.7558483.
  4. Dwyer C.P., Hogan M.J., and Stewart I. (2013). An examination of the effects of argument mapping on students’ memory and comprehension performance. Thinking Skills and Creativity, 8: 11-24. DOI: 10.1016/j.tsc.2012.12.002.
  5. Facione P.A. and Facione N.C. (2010). Holistic Critical Thinking Scoring Rubric [PDF file]. The California Academic Press.
  6. Fan C.-Y. and Chen G.-D. (2021). A scaffolding tool to assist learners in argumenta-tive writing. Computer Assisted Language Learning, 34(1-2): 159-183. DOI: 10.1080/09588221.2019.1660685.
  7. Ganino G. (2020). Riduzione carico cognitivo estraneo e apprendimenti multimediali in un ambiente di web conference. Reports on E-Learning, Media and Education Meetings, 8(1): 234-239.
  8. Grion V., Serbati A., Doria B., and Nicol D. (2021). Ripensare il concetto di feedback: Il ruolo della comparazione nei processi di valutazione per l’apprendimento. Education Sciences & Society, 2: 205-220. DOI: 10.3280/ess2-2021oa12429.
  9. Hoffman J.I.E. (2019). Chapter 26 – Analysis of Variance. II. More Complex Forms. In J. I. E. Hoffman (a cura di), Basic Biostatistics for Medical and Biomedical Practitioners (2nd ed.) (pp. 419-441). Academic Press. DOI: 10.1016/B978-0-12-817084-7.00026-7.
  10. Iordanou K. and Rapanta C. (2021). “Argue With Me”: A Method for Developing Argument Skills. Frontiers in Psychology, 12.
  11. Moretti G. (2010). Lucia Lumbelli (2009): «La comprensione come problema. Il punto di vista cognitivo». Journal of Educational, Cultural and Psychological Studies (ECPS Journal), 1(2).
  12. Nicol D. (2018). Unlocking generative feedback through peer reviewing. In V. Grion and A. Serbati (a cura di), Assessment of learning or assessment for learning? Towards a culture of sustainable assessment in higher education (pp. 47-59). Pensa MultiMedia Editore.
  13. Nicol D. (2021a, March 23). Guiding learning by activating students’ inner feedback. THE Times Higher Education.
  14. Nicol D. (2021b). The power of internal feedback: Exploiting natural comparison processes. Assessment & Evaluation in Higher Education, 46(5): 756-778. DOI: 10.1080/02602938.2020.1823314.
  15. Nicol, D. and McCallum, S. (2022). Making internal feedback explicit: Exploiting the multiple comparisons that occur during peer review. Assessment & Evaluation in Higher Education, 47(3): 424-443. DOI: 10.1080/02602938.2021.1924620.
  16. Panadero E. and Lipnevich A.A. (2022). A review of feedback models and typologies: Towards an integrative model of feedback elements. Educational Research Review, 35. DOI: 10.1016/j.edurev.2021.100416.
  17. Sambell K. and Graham L. (2020). «We Need to Change What We’re Doing.» Using Pedagogic Action Research to Improve Teacher Management of Exemplars. Practitioner Research in Higher Education, 13(1): 3-17.
  18. Serbati A., Grion V., and Fanti M. (2019). Caratteristiche del peer feedback e giudizio valutativo in un corso universitario blended. Giornale Italiano della Ricerca Educativa – Italian Journal of Educational Research, 12 (numero speciale): 115-137. DOI: 10.7346/SIRD-1S2019-P115.
  19. Skulmowski A. and Xu K.M. (2022). Understanding Cognitive Load in Digital and Online Learning: A New Perspective on Extraneous Cognitive Load. Educational Psychology Review, 34(1): 171-196. DOI: 10.1007/s10648-021-09624-7.
  20. Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. DOI: 10.1016/0364-0213(88)90023-7.
  21. Sweller J. (2005). Implications of Cognitive Load Theory for Multimedia Learning. In R. Mayer (A cura di), The Cambridge Handbook of Multimedia Learning (pp. 19-30). Cambridge University Press. DOI: 10.1017/CBO9780511816819.003.
  22. van der Brugge E. (2018). The use of argument mapping in improving critical think-ing [Unpublished doctoral dissertation]. University of Melbourne.
  23. Wambsganss T., Niklaus C., Cetto M., Söllner M., Handschuh S., and Leimeister J.M. (2020). AL: An Adaptive Learning Support System for Argumentation Skills. In R. Bernhaupt, F.F. Mueller, D. Verweij, J. Andres, J. McGrenere, A. Cockburn, I. Avellino, A. Goguey, P. BjØrn, S. Zhao, B.P. Samson, and R. Kocielnik (a cura di), CHI’20:Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-14). Association for Computing Machinery. DOI: 10.1145/3313831.3376732.


Metrics Loading ...