Skip to main navigation menu Skip to main content Skip to site footer

Papers

No. 1 (2022)

The energy transition in the current global context

  • Domenico de Vincenzo
DOI
https://doi.org/10.3280/rgioa1-2022oa13368
Submitted
aprile 7, 2021
Published
2022-03-08

Abstract

The energy transition is a process of transformation of the mix of primary sources of energy, but it is also a process of change that implies a profound transformation, which leads to a modification of lifestyles and a transformation of economic processes, so that
we also arrive at the reduction of energy demand. Putting aside (at least for the moment) the problem of the depletion of fossil fuels, which for decades has occupied the debate on energy, given the renewed vitality in oil production, the energy transition is now exclusively dedicated to the reduction of emissions of greenhouse gases and mitigation of the causes of climate change. The process of replacing fossil fuels with clean and renewable energy, however, cannot fail to take into account the economic (price, demand and supply) and technical (capacity and production consistency) aspects that affect the use of different energy sources. The transition scenarios, therefore, should consider the economic aspects, but are often completely detached from them. The global economic context poses a challenge to the energy transition in at least two respects: 1) the reduction in the price of oil and 2) the abundant supply of oil. The price of oil, which has been falling since 2014 (although recovering in 2021) has been deeply affected by the collapse in energy demand caused by the Covid-19 pandemic. This price drop can make the energy transition problematic, as renewables could become more expensive than fossil fuels. The pandemic, however, has suddenly made all the previously developed scenarios obsolete, producing uncertainty about the future development of the energy transition.
The abundant supply of oil (itself the cause of the crisis in its price), in turn, increases this uncertainty. Indeed, if until the first decade of the 2000s it was the exhaustion of oil that paved the way for the energy transition, now it is its wide willingness to hinder it: it is necessary to face the transition not because of the exhaustion of oil, but despite the abundance of it, to counter the greenhouse effect.

References

  1. Adelman M.A. (1989). The Economics of Oil and Gas Depletion. Panel on Resource Assessment, American Statistical Association. Washington D.C.: American Statistical Association.
  2. Id. (1992). Oil Resource Wealth of the Middle East. Energy Studies Review, 4(1): 7-22.
  3. Id. (1993). The Economics of Petroleum Supply: Papers 1962-1993. Cambridge MA: The MIT Press.
  4. Id. (1998). Crude oil supply curves, WP98-008, Center for Energy and Environmental Policy Research. Cambridge MA: Massachusetts Institute of Technology.
  5. Aichberger C., Jungmeier G. (2020). Environmental Life Cycle Impacts of Automotive Batteries Based on a Literature Review. Energies, 13, n. 23: 6345. DOI: 10.3390/en13236345.
  6. Asmus P. (2001). Reaping the Wind. Washington: Island Press.
  7. Bagliani M., Dansero E., Puttilli M. (2010). Sostenibilità territoriali e fonti rinnovabili. Un modello interpretativo. Rivista geografica italiana, 109(3): 291-316.
  8. Id., Pietta A., Bonaiuti S. (2019). Il cambiamento climatico in prospettiva geografica. Aspetti fisici, impatti, politiche. Bologna: Il Mulino.
  9. Bardi U. (2019). Peak oil, 20 years later: Failed prediction or useful insight? Energy Research & Social Science, 48: 257-261. DOI: 10.1016/j.erss.2018.09.022
  10. Barros N. et al. (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4(9): 593-596. DOI: 10.1038/ngeo1211
  11. Battisti G. (2009). Quale transizione energetica? Il ruolo delle fonti alternative. Est-Ovest, 40(3): 1-15.
  12. Bellezza G. (1980). I problemi dell’energia. In: Corna Pellegrini G., Brusa C., La ricerca geografica in Italia 1960-1980. Varese: ASK Edizioni.
  13. Bencardino F. (2020). Introduzione. Geografia ed energia: un rapporto tra tradizione, ricerca e innovazione. In: Società Geografica Italiana, cit.
  14. Bloomberg (2020). New energy Outlook. BloombergNEF, s.l., 2020.
  15. Bocca R. (2020). As coronavirus shocks the energy sector and economy, is now the time for a new energy order? World Economic forum, weforum.org, 20 aprile.
  16. BP (2019a). Energy Outlook 2019. Londra: BP p.l.c.
  17. Id. (2019b). BP plans for significant growth in deepwater Gulf of Mexico. BP, bp.com, 8 gennaio.
  18. Id. (2020a). Statistical Review of World Energy 2020. Londra: BP p.l.c.
  19. Id. (2020b). Energy Outlook 2020. Londra: BP p.l.c.
  20. Id. (2021). Statistical Review of World Energy 2021. Londra: BP p.l.c.
  21. Briffaud S., Ferrario V. (2015). Ricollegare energia e territorio: il paesaggio come intermediario. Alcune riflessioni a partire dai risultati del progetto Ressources. In: Castiglioni B., Parascandolo F., Tanca M. (a cura di), Landscape as a mediator, landscape as a common Prospettive internazionali di ricerca sul paesaggio. Padova: Cleup.
  22. Calvert K. (2015). From ‘energy geography’ to ‘energy geographies’: Perspectives on a fertile academic borderland. Progress in Human Geography, 40(1): 105-125. DOI: 10.1177/0309132514566343
  23. Chiabrando R., Fabrizio E., Garnero G. (2009). The territorial and landscape impacts of photovoltaic systems: definition of impacts and assessment of the glare risk. Renewable Sustainable Energy Review, 13: 2441-2451. DOI: 10.1016/j.rser.2009.06.008
  24. Codato D., Pappalardo S.E., Diantini A., Ferrarese F., Gianoli F., De Marchi M. (2019). Oil production, biodiversity conservation and indigenous territories: Towards geographical criteria for unburnable carbon areas in the Amazon rainforest. Applied Geography, n. 102: 28-38. DOI: 10.1016/j.apgeog.2018.12.001
  25. Colin A., Vailles C., Hubert R. (2019). Understanding transition scenarios. s.l.: I4CEInstitute for Climate Economics.
  26. Crooks E. (2020). What the coronavirus means for the energy transition. Wood Mackenzie, woodmac.com, 29 settembre.
  27. Dale S., Fattouth B. (2018). Peak Oil Demand and Long-Run Oil Prices. Oxford: University of Oxford, Oxford Institute for Energy Studies.
  28. Dansero E., Puttilli M. (2009). Paesaggio e fonti energetiche rinnovabili. Tra vulnerabilità e opportunità di sviluppo. In: Mautone M., Ronza M., a cura di, Patrimonio culturale e paesaggio. Un approccio di filiera per la progettualità territoriale. Roma: Gangemi.
  29. Dasgupta P.S., Heal G. (1974). The Optimal Depletion of Exhaustible Resources. The Review of Economic Studies, 41: 3-28. DOI: 10.2307/2296369
  30. Id., Id. (1979). Economic Theory and Exhaustible Resources. Cambridge: Cambridge University Press.
  31. de Vincenzo D. (2019). Ligth Tight Oil e nuova geografia del petrolio statunitense. Rivista geografica italiana, 146(3): 5-32. DOI: 10.3280/RGI2019-003001
  32. Id. (2020a). Fine del petrolio o petrolio senza fine? Padova: Libreria Universitaria Editrice.
  33. Id. (2020b). Pandemia Covid-19 e crisi petrolifera. Documenti Geografici, n. 1 (nuova serie): 185-198. DOI: 10.19246/DOCUGEO2281-7549/202001_11
  34. Id. (2020c). Pandemia e possibile declino dei combustibili fossili. Economia e Ambiente, 39(1): 23-33.
  35. Della Pietra M., McPhail S., Turchetti L., Monteleone G. (2020). I ‘colori’ dell’idrogeno nella transizione energetica. Energia, Ambiente e Innovazione, 2. DOI: 10.12910/EAI2020-040
  36. DNV_GL (2020). Energy transition Outlook 2020. Høvik (Norvegia): DNV GL AS.
  37. EIA (Energy Information Administration) (2013). Top 100 U.S. Oil and Gas Fields. Washington: U.S. Department of Energy.
  38. Id. (2019). U.S. Federal Gulf of Mexico crude oil production to continue to set records through 2020. EIA, eia.gov, 16 ottobre.
  39. Id. (2020). International Energy Outlook. Washington: Energy Information Administration.
  40. Id. (2021). International Energy Outlook. Washington: Energy Information Administration.
  41. Equinor (2020). Energy Perspectives 2020. s.l.: Equinor.
  42. Ferrario V., Castiglioni B. (2015). Il paesaggio invisibile delle transizioni energetiche. Lo sfruttamento idroelettrico del bacino del Piave. Bollettino della Società Geografica Italiana, Serie XIII, Vol. VIII: 531-533.
  43. Forum (2021). Covid-19 and the Energy Transition. Oxford: Oxford Institute for Energy Studies, June.
  44. Freeman D. et al. (1974) A Time to Choose. America’s Energy Future. Cambridge MA: Ballinger Publishing Co.
  45. Georgescu-Roegen N. (1971). The Entropy Law and the Economic Process. Cambridge MA: Harvard University Press.
  46. Goehring L.R., Rozencwajg A.A. (2021). Ignoring Energy Transition Realities, Fourth Quarter 2020. Goehring & Rozencwajg Natural Resource Market Commentary.
  47. Grasso M., Vergine S. (2020). Tutte le colpe dei petrolieri. Milano: Piemme.
  48. Greenpeace (2015). Energy [R]evolution. A Sustainable World Energy Outlook 2015. Washington: Greenpeace.
  49. Grubler A. et al. (2018). A Low Energy Demand Scenario for Meeting the 1.5°C Target and Sustainable Development Goals without Negative Emission Technologies. Nature Energy, 3(6): 517-525. DOI: 10.1038/s41560-018-0172-6
  50. Hicks J.R. (1932), The Theory of Wages. Londra: MacMillan (seconda ed. 1963).
  51. Hotelling H. (1931). The economics of exhaustible resources. Journal of Political Economy, 39(2): 137-175. DOI: 10.1086/254195
  52. Hubbert M.K. (1949). Energy from Fossil Fuels. Science, 109, n. 2823: 103-108. DOI: 10.1126/science.109.2823.103
  53. Id. (1959). Techniques of Prediction with Application to the Petroleum Industry. Houston: Shell Development Company.
  54. IEA (2020a). World Energy Outlook. Parigi: International Energy Agency.
  55. Id. (2020b). World Energy Model. Parigi: International Energy Agency.
  56. Id. (2020c). Investment estimates for 2020 continue to point to a record slump in spending. EIA, iea.org, 23 ottobre.
  57. Id. (2021a). Covid-19 Impact on Electricity. International Energy Agency, IEA, iea.org, gennaio.
  58. Id. (2021b), Oil market report – February 2021, International Energy Agency, IEA, iea.org, febbraio.
  59. IEEJ (2019). Outlook 2020. s.l.: The Institute of Energy Economics Japan.
  60. IPCC (2019). Global Warming 1.5C. s.l.: Intergovernmental Panel on Climate Change.
  61. IRENA (2020a). Scenarios for the Energy Transition. Abu Dhabi: International Renewable Energy Agency.
  62. Id. (2020b). Renewable Power Generation Costs in 2019. Abu Dhabi: International Renewable Energy Agency.
  63. Id. (2020c). Global Renewable Outlook. Abu Dhabi: International Renewable Energy Agency.
  64. Jevons W.S. (1865). The Coal Question. An Inquiry concerning the Progress of the Nation, and the Probable Exhaustion of our Coal-mines. London: MacMillan.
  65. Kaufmann R.K. (2014). The End of Cheap Oil: Economic, Social, and Political Change in the US and Former Soviet Union. Energies, 7: 6225-6241. DOI: 10.3390/en7106225
  66. Id., Cleveland C.J. (2001). Oil production in the lower 48 states: economic, geological and institutional determinants. The Energy Journal, 22: 27-49. DOI: 10.2307/41322906
  67. Id., Shiers L.D. (2008). Alternatives to conventional crude oil: When, how quickly, and market driven? Ecological Economics, n. 67: 405-411. DOI: 10.1016/j.ecolecon.2007.12.023
  68. Kendall H.W., Nadis S.J. (1980). Energy Strategy toward a Solar Future. Cambridge MA: Ballinger Publishing Co.
  69. Kennedy C. (2021). Big Oil clashes over fossil fuels future. Oilprice, oilprice.com, 2 marzo.
  70. Jensen S., Mohliny K., Pittelz K., Sterner T. (2015). An Introduction to the Green
  71. Paradox: The Unintended Consequences of Climate Policies. Review of Environmental Economics and Policy, 9(2): 246-265.
  72. Lazard (2020). Levelized cost of energy analysis - version 14.0, Lazard, lazard.com, ottobre.
  73. Lee J. (2020). Covid-19 Is Big Oil’s Asteroid Strike. Bloomberg, Bloomberg.com, 11 ottobre.
  74. Levy A. (2000). From Hotelling to Backstop Technology, Working Paper 00-04, Department of Economics, University of Wollongong.
  75. Lynch M.C. (2016). The Peak Oil Scare and the Coming Oil Flood (presentazione di L. Maugeri). Santa Barbara CA: Praeger.
  76. Malthus T.R. (1977). Saggio sul principio di popolazione. Torino: Einaudi (ed. orig. 1798).
  77. Marchetti C., Nakicenovic N. (1979). The Dynamics of Energy Systems and the Logistic Substitution Model. Laxenburg: International Institute for Applied Analysis.
  78. Mauro G. (2019). The new ‘windscapes’ in the time of energy transition. A comparison of ten European countries. Applied Geography, n. 109: 1-15. DOI: 10.1016/j.apgeog.2019.102041
  79. Id., Lughi V. (2017). Mapping land use impact of photovoltaic farms via crowdsourcing in the Province of Lecce (Southeastern Italy), Solar Energy, n. 155: 434-444. DOI: 10.1016/j.solener.2017.06.046
  80. Mendonça et al. (2012). Greenhouse Gas Emissions from Hydroelectric Reservoirs: What Knowledge Do We Have and What is Lacking?, in Guoxiang Liu (a cura di), Greenhouse Gases – Emission, Measurement and Management. s.l.: IntechOpen.
  81. Newell G.R., Raimi D., Villanueva S., Prest B. (2012). Global Energy Outlook 2020: Energy Transition or Energy Addition? With Commentary on Implications of the Covid-19 Pandemic. Resources for the Future. rff.org
  82. Nordhaus W.D. (1973). The Allocation of Energy Resources. Brookings Papers on Economic Activity, 3: 529-570.
  83. Pitchers C (2020). “Fossil fuels still needed during green transition”, top EU official says, Euronews, euronews.com, 22 ottobre.
  84. Puttilli M. (2009). Per un approccio geografico alla transizione energetica. Le vocazioni energetiche territoriali. Bollettino della Società Geografica Italiana, serie XIII, vol. II, 3: 601-616.
  85. Id. (2014). Geografia delle fonti rinnovabili. Milano: FrancoAngeli.
  86. Rystad Energy (2020a). Global E&P players may invest $380 billion in 2021, but about 20% is at risk. Rystad Energy, rystadenergy.com, 20 novembre.
  87. Id. (2020b). Covid-19 and energy transition will expedite peak oil demand to 2028 and cut level to 102 million bpd. Rystad Energy, rystadenergy.com, 2 novembre.
  88. Id. (2021). Covid-19 Report – February 2021. Global outbreak overview and its impact on the energy sector. Oslo: Rystad Energy.
  89. Roncaglia R. (2006). Il prezzo dell’energia condizionato da fattori politici e strategici. Global Competition, n. 3, aprile: 17-24.
  90. Ruggiero L. (2015). Il ruolo degli idrocarburi negli scenari geopolitici della sicurezza energetica euro-mediterranea dopo la ‘primavera araba’. Rivista geografica italiana, 122(1): 51-66
  91. Scarpelli L. (2014). La ricerca della geografia italiana sull’ambiente e la visione pragmatica di Giorgio Spinelli. In: Celant A., Morelli P., Scarpelli L. (a cura di), Le categorie geografiche di Giorgio Spinelli. Bologna: Pàtron.
  92. Sinn H.W. (2015). The Green Paradox: A Supply-side View of the Climate Problem, Cesifo Working Paper No. 5385, Giugno.
  93. Società Geografica Italiana (2020). XIV Rapporto Energia e Territorio. Per una geografia dei paesaggi energetici italiani. Roma: Società Geografica Italiana.
  94. Solé J. et al. (2020). Modelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model. Renewable and Sustainable Energy Reviews, n. 132: 1-13. DOI: 10.1016/j.rser.2020.110105
  95. Solomon B.D., Krishna K. (2011), The coming sustainable energy transition: History, strategies, and outlook. Energy Policy, 39: 7422-7431. DOI: 10.1016/j.enpol.2011.09.009
  96. Spinelli G. (1969). Il carbone statunitense nel mercato della CEE. Roma: Istituto di Geografia Economica della Facoltà di Economia dell’Università di Roma.
  97. Id. (1970). Il petrolio dell’Alasca. Geografia Economica, 1-2: 51-58.
  98. Id. (1975). Alcune osservazioni geografico-economiche a proposito della recente crisi petrolifera. Notiziario di Geografia Economica, 6(1-2): 29-35.
  99. Id. (1977). L’ecosistema mondiale: riflessioni geografico-economiche sulla formulazione di un Sistema regionalizzato. Notiziario di Geografia Economica, 8(3-4): 16-24.
  100. Tsiropoulos I., Nijs W., Tarvydas D., Ruiz Castello P. (2020). Towards net-zero emissions in the EU energy system by 2050. Luxembourg: Publications Office of the European Union.
  101. UNCTAD (2020). Commodities at a glance. Special issue on strategic battery raw material. Ginevra: United Nations Conference on Trade and Development-UNCTAD.
  102. Valentine S.V., Brown M.A., Sovacool B.K. (2019). Empowering the Great Energy Transition: Policy for a Low-Carbon Future. New York: Columbia University Press. DOI: 10.7312/vale18596
  103. Watkins G.C., Streifel S.S. (1996). World Crude Oil Resources: Evidence from Estimating Supply Functions for 41 Countries. Washington: World Bank.
  104. WEC (2019). World Energy Trilemma Index. London: World Energy Council.

Metrics

Metrics Loading ...