Skip to main navigation menu Skip to main content Skip to site footer

Articles/Articoli

Vol. 15 No. 2 (2024): Artificial Intelligence in Schools and University Education: Risks and Opportunities

Innovation in Competence Management: The Role of the e-Portfolio supported by GenAI in Higher Education

DOI
https://doi.org/10.3280/ess2-2024oa18446
Submitted
settembre 9, 2024
Published
2025-01-31

Abstract

This paper analyses how the skills e-portfolio, supported by Generative Artificial Intelligence (GenAI), represents an innovative pedagogical tool in higher education to better align the highly qualified labor supply with the often undervalued demand for skills. Thanks to AI, it is possible to model the e-portfolio in a more personalized and fair manner, enhancing transversal skills, microcredentials and reducing the risk of excessive standardization. This tool allows students to document and reflect on their abilities, improving their

visibility in the labor market. However, ethical issues arise, such as the inappropriate use of e-portfolios by employers for exclusionary purposes, and the lack of transparency in algorithms that could discriminate against atypical profiles. If used responsibly, GenAI can help make the e-portfolio an inclusive tool, reducing disparities and promoting a fairer assessment of skills.

References

  1. Arkins M. (2023). The road to ethical university-industry collaborations. University Industry Innovation Network. In https://www.uiin.org/2023/12/14/the-road-to-ethical-partnerships-lessons-from-university-industry-collaborations/.
  2. Bahroun Z. et al. (2023). Transforming Education: A Comprehensive Review of Generative Artificial Intelligence. Educational Settings. Sustainability, 15(17), 12983. Basilea: MDPI. DOI:10.3390/su151712983.
  3. Barth M. et al. (2007). Developing key competencies for sustainable development in higher education. International Journal of Sustainability in Higher Education, 8(4): 416-430. DOI:10.1108/14676370710823582.
  4. Boddington P. (2023). AI Ethics: A Textbook. Berlin: Springer Nature.
  5. Borgman C. L. (2016). Big Data, Little Data, No Data: Scholarship in the Networked World. Cambridge, MA: MIT Press.
  6. Calvani A. (200I). Educazione, comunicazione e nuovi media. Sfide pedagogiche e cyberspazio. Torino: UTEI.
  7. Carlotto G. (2015). Soft skills. Convincere con le competenze trasversali e raggiungere i propri obiettivi. Milano: FrancoAngeli.
  8. Commissione Europea (2018). Comunicazione della Commissione al Parlamento europeo, al Consiglio, al Comitato economico e sociale europeo e al Comitato delle regioni. L’intelligenza artificiale per l’Europa. In https://eur-lex.curopa.eu/legalcontent/IT/TXT/PDF/?url=CELEX:52018DC0237.
  9. Creative Computing Lab. (n.d.). Publications. Harvard Graduate School of Education. In https://creativecomputing.gse.harvard.edu/publications.html.
  10. Crompton H., Burke D. (2023). Artificial intelligence in higher education: The state of the field. International Journal of Educational Technology in Higher Education, 20(1), 22. DOI:10.1186/s41239-023-00392-8.
  11. De Felice F., Race R. (2023). Il mondo nuovissimo. Dialoghi su etica e intelligenza artificiale. Roma: Luiss University Press.
  12. Deloitte Insights (2024). How higher education can realize the potential of generative AI. Londra: Deloitte. In https://www2.deloitte.com/us/en/insights/industry/public-sector/generative-ai-higher-education.html.
  13. Domingos P. (2016). L’algoritmo definitivo. La macchina che impara da sola e il futuro del nostro mondo. Torino: Bollati Boringhieri.
  14. EPICA Consortium. (2021). Enhancing and validating learning achievements in Africa via e-portfolios. European Commission, Brussels, Belgium. In https://cordis.europa.eu/project/id/780435.
  15. European Commission (2020). Europass project update (version 6.3). European Commission. In https://ec.europa.eu/futurium/en/system/files/ged/epass_6-3_europass_project_update.pdf.
  16. European Commission, Directorate General for Education, Youth, Sport and Culture (2022). Ethical Guidelines on the Use of Artificial lntelligence (AI) and Data in Teaching and Learning for Educators. In https://op.curopa.cu/en/publication-detail/-/publication/d81aods4-5348-11ed-92cd-otaazsedz1a1/language-en.
  17. Floridi L. (2014). The Fourth Revolution: How the lnfosphere is Reshaping Human Reality. Oxford: Oxford University Press.
  18. ID. (2022). Etica dell’intelligenza artificiale. Sviluppi, opportunità, sfide. Milano: Raffaello Cortina Editore.
  19. Galimberti U. (2007). L’ospite inquietante. Milano: Feltrinelli.
  20. Giannini S. (2023). Generative Artificial Intelligence in Education: Think piece. Parigi: UNESCO. DOI: 10.54675/HOXG8740.
  21. Gordon J. S., Nyholm S. (2021). Ethics of Artificial Intelligence. Internet Encyclopedia of Philosophy. In https://iep.utm.edu/ethics-of artificial-intelligence/.
  22. Jisc (2024). Digital transformation in higher education. Jisc. In https://www.jisc.ac.uk/guides/digital-transformation-in-higher-education.
  23. Johns Hopkins University (n.d.). Generative AI and university teaching policies. In https://teaching.jhu.edu/university-teaching-policies/generative-ai/.
  24. LeCun Y., Bengio Y. and Hinton G. (2015). Deep Learning. Nature, 521(7553): 436-444. DOI: 10.1038/nature14539.
  25. OECD (2019). Recommendation of the Council on Artificial Intelligence, OECD Pub-lishing, Paris. In https://occd.ai/en/assets/files/OECD-LEGAL-0449-en.pdf.
  26. OECD (2021). AI in Education: A Promising but Risky Venture. In https://www.oecd-ilibrary.org/education/artificial-intelligence-in-education_69cd032e-en.
  27. Office of the Vice Provost for Advances in Learning (VPAL), Harvard University. (n.d.). Check out HUIT generative artificial intelligence guidelines and resources for the use of AI. Harvard University. In https://vpal.harvard.edu/links/check-out-huit-generative-artificial-intelligence-guidelines-and-resources-use-ai.
  28. Oliviero G. (2018). Il futuro che verrà. Quello che gli scienziati possono prevedere. Torino: Bollati Boringhieri, Torino.
  29. Pezzoli M. (2017). Soft skills che generano valore. Le competenze traversali per l’industria 4.0. Milano: FrancoAngeli.
  30. Ranieri M., Cuomo S. and Biagini G. (2023). Scuola e Intelligenza Artificiale. Per-corsi di alfabetizzazione critica. Roma: Carocci.
  31. Ripple (n.d.). University Blockchain Research Initiative (UBRI). In https://cdn.ripple.com/.
  32. Ross A. (2017). Il nostro futuro. Come affrontare il mondo dei prossimi vent’anni. Milano: Feltrinelli.
  33. Schwab K. (2016). La quarta rivoluzione industriale. Milano: FrancoAngeli.
  34. Selwyn N. (2004). Reconsidering Political and Popular Understandings of the Digital Divide. New Media & Society, 6(3) 341-62.
  35. ID (2011). Education and Technology: Key Issues and Debates. London-New York: Continuum International Publishing Group.
  36. Selwyn et al. (2023). Digital technologies and the automation of education: Key questions and concerns. Postdigital Science and Education. DOI: 10.1007/s42438-021-00263-3.
  37. Stahl B. C., Schroeder D. and Rodrigues R. (eds.) (2023). Ethics of Artificial lntelli-gence: Case Studies and Options for Addressing Ethical Challenges. New York: Springer.
  38. Stanford Accelerate Learning (n.d.). Digital learning initiatives. Stanford University. In https://acceleratelearning.stanford.edu/initiative/digital-learning/.
  39. Stanford Graduate School of Education (2021). Spring 2021 digital initiatives. Stanford University. In https://gse-it.stanford.edu/about/digital-initiatives/spring-2021.
  40. The University of Texas at San Antonio (UTSA) (2024). Generative AI guidelines for faculty: Faculty guide to generative AI tools in education (Version 1.20.24). In https://provost.utsa.edu/academicinnovation/docs/genai_faculty_guide/utsa_faculty-genai-guidelines.1.20.24.pdf.
  41. UNESCO (2021). Al and Education: Guidance for Policy Makers. In https://unesdoc.unesco.org/ark:/48223/pf0000376709 .
  42. UNESCO. (2023). Technology in Education: A tool on whose terms? Global Education Monitoring Report 2023. Parigi: UNESCO. In https://unesdoc.unesco.org/ark:/48223/pf0000391336.
  43. Van Dijck J. (2014). Datafication, Dataism and Dataveillance: Big Data between Scientific Paradigm and Ideology. Surveillance & Society, 12(2): 197-208. DOI: 10.24908/ss.v12i2.4776.
  44. World Economic Forum (2020). Ethics by Design: Artificial Intelligence in Higher Education. In https://www.weforum.org/agenda/2020/02/ai-in-higher-education-ethics-by-design/.

Metrics

Metrics Loading ...