Skip to main navigation menu Skip to main content Skip to site footer

Regular Articles

Vol. 24 No. 3 (2022)

Adapting a participatory modelling method to forecast food system scenarios: a case study on the pork value-chain

DOI
https://doi.org/10.3280/ecag2022oa14488
Submitted
agosto 5, 2022
Published
2022-12-31

Abstract

For a value-chain to be sustainable, the main challenge is sometimes its durability. When stakeholders are lost in the shifting maze of economic, social and environmental issues, participatory foresight methods help them consider the options and choose a strategy to follow. The aim is to create several scenarios of evolution of the value-chain and select desirable scenarios. Because of the global context in 2020 and 2021, implementing methodological and organizational adaptations in the classic “scenario method” from Michel Godet was necessary. These adaptations are exemplified by the case study of the prospective for the French pork value-chain in the next 5 years. Indeed, this value-chain touches particularly on certain contemporary concerns, with much discussion about its environmental footprint, its human resource challenge and its social acceptability, as is the case for most food value-chains in developed countries.

References

  1. AGRESTE (2021). Essentiel filière porc Bretagne. Statistiques publiques, 7. -- https://draaf.bretagne.agriculture.gouv.fr/IMG/pdf/07_Essentiel_Bgne_porcs_2021_cle8e7943.pdf.
  2. Balmann, A., Dautzenberg, K., Happe, K., & Kellermann, K. (2006). On the Dynamics of Structural Change in Agriculture: Internal Frictions, Policy Threats and Vertical Integration. Outlook on Agriculture, 35(2), 115‑121. doi: 10.5367/000000006777641543.
  3. Bar-Yam, Y. (2002). General Features of Complex Systems. UNESCO Encyclopedia of Life Support Systems.
  4. Basset-Mens, C. (2005). Proposition pour une adaptation de l’Analyse de Cycle de Vie aux systèmes de production agricole. Mise en oeuvre pour l’évaluation environnementale de la production porcine, thèse de doctorat, Agrocampus Ouest.
  5. Bourguet, J.-R., Thomopoulos, R., Mugnier, M.-L., & Abécassis, J. (2013). An artificial intelligence-based approach to deal with argumentation applied to food quality in a public health policy. Expert Systems with Applications, 40(11), 4539‑4546. doi: 10.1016/j.eswa.2013.01.059.
  6. Campbell, N., Correa-Rotter, R., Neal, B., & Cappuccio, F.P. (2011). New evidence relating to the health impact of reducing salt intake. Nutrition, Metabolism and Cardiovascular Diseases, 21(9), 617‑619. doi: 10.1016/j.numecd.2011.08.001.
  7. Chaib, R.L., Macombe, C., & Thomopoulos, R. (2022). Designing the Future of Agri-Food Chains: Comparison of Prospective Analysis Built 40 Years Ago and Today, 6.
  8. Chevalier, F., & Meyer, V. (2018). Chapitre 6. Les entretiens. In: Les méthodes de recherche du DBA (pp. 108‑125). EMS Editions; Cairn.info. doi: 10.3917/ems.cheva.2018.01.0108.
  9. Clarkson, M.E. (1995). A Stakeholder Framework for Analyzing and Evaluating Corporate Social Performance. Academy of Management Review, 20(1), 92‑117. doi: 10.5465/amr.1995.9503271994.
  10. Cordobes, S., Durance, P., & Lesourne, J. (2004). Les entretiens de la mémoire de la prospective.
  11. Cossette, P. (2004). L’organisation: Une perspective cognitiviste. Presse Université Laval.
  12. Cossette, P. (2008). La cartographie cognitive vue d’une perspective subjectiviste: Mise à l’épreuve d’une nouvelle approche. M@n@gement, 11(3), 259. doi: 10.3917/mana.113.0259.
  13. Croitoru, M., Buche, P., Charnomordic, B., Fortin, J., Jones, H., Neveu, P., Symeonidou, D., & Thomopoulos, R. (2016). A Proposal for Modelling Agrifood Chains as Multi Agent Systems. In: J.P. Carvalho, M.-J. Lesot, U. Kaymak, S. Vieira, B. Bouchon-Meunier, & R.R. Yager (Éds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems (Vol. 610, pp. 498‑509). Springer International Publishing. doi: 10.1007/978-3-319-40596-4_42.
  14. De Jouvenel, B. (1964). L’art de la conjuncture. Edition Du Rocher.
  15. Dourmad, J.Y., Canario, L., Gilbert, H., Merlot, E., Quesnel, H., & Prunier, A. (2010). Évolution des performances et de la robustesse des animaux en élevage porcin. INRAE Productions Animales, 23(1), 53‑64. doi: 10.20870/productionsanimales.2010.23.1.3287.
  16. Godet, M. (2007). Manuel de prospective stratégique-Tome 1-3ème édition-Une indiscipline intellectuelle. Dunod.
  17. Godet, M. (2008). Strategic foresight: Use and misuse of scenario building.
  18. Godet, M., & Durance, P. (2001). La prospective stratégique pour les entreprises et les territoires. Dunod.
  19. Godet, M., & Lesourne, J. (1977). Crise de la prévision, essor de la prospective: Exemples et méthodes. Presses universitaires de France.
  20. Handayati, Y., Simatupang, T. M., & Perdana, T. (2015). Agri-food supply chain coordination: The state-of-the-art and recent developments. Logistics Research, 8(1), 5. doi: 10.1007/s12159-015-0125-4.
  21. Kopainsky, B., & Stave, K. (2014). Dynamic thinking about food system vulnerabilities in highly developed countries: Issues and initial analytic structure for building resilience. -- www.researchgate.net/publication/281280683_Dynamic_thinking_about_food_system_vulnerabilities_in_highly_developed_countries_Issues_and_initial_analytic_structure_for_building_resilience.
  22. Kopp, A.R., Rikin, S., Cassese, T., Berger, M.A., Raff, A.C., & Gendlina, I. (2021). Medical student remote eConsult participation during the Covid-19 pandemic. BMC Medical Education, 21(1), 120. doi: 10.1186/s12909-021-02562-6.
  23. Krämer-Flecken, A., Krom, J., Landgraf, B., & Lambertz, H.T. (2010). Remote Participation tools at TEXTOR. Fusion Engineering and Design, 85(3‑4), 625‑627. doi: 10.1016/j.fusengdes.2010.02.008.
  24. Lesourne, J. (1989). Plaidoyer pour une recherche en prospective, 137.
  25. Lundberg, A., de Leeuw, R., & Aliani, R. (2020). Using Q methodology: Sorting out subjectivity in educational research. Educational Research Review, 31, 100361. doi: 10.1016/j.edurev.2020.100361.
  26. Macombe, C., Le Feon, S., Aubin, J., & Maillard, F. (2019). Marketing and social effects of industrial scale insect value chains in Europe: Case of mealworm for feed in France. Journal of Insects as Food and Feed, 5(3), 215‑224. doi: 10.3920/JIFF2018.0047.
  27. Meadows, D.H., Meadows, D.L., Randers, J., & Behrens III, W.W. (1972). The limits to growth-club of Rome.
  28. Mitchell, R.K., Agle, B.R., & Wood, D.J. (1997). Toward a Theory of Stakeholder Identification and Salience: Defining the Principle of Who and What Really Counts. Academy of Management Review, 22(4), 853‑886.
  29. Nissen, M. (2012). Constructing Subjectivity in Participation. In: M. Nissen, The Subjectivity of Participation (pp. 193‑230). Palgrave Macmillan UK. doi: 10.1057/9780230367890_8.
  30. Perrot, N., Trelea, I.C., Baudrit, C., Trystram, G., & Bourgine, P. (2011). Modelling and analysis of complex food systems: State of the art and new trends. Trends in Food Science & Technology, 22(6), 304‑314. doi: 10.1016/j.tifs.2011.03.008.
  31. Reijnders, L., & Soret, S. (2003). Quantification of the environmental impact of different dietary protein choices. The American Journal of Clinical Nutrition, 78(3), 664S-668S. doi: 10.1093/ajcn/78.3.664S.
  32. Roguet, C. (2017). Evolution des modèles d’exploitations porcines en France sous l’effet des contraintes économiques et réglementaires depuis 2008. Journées Recherche Porcine, 49, 277‑282.
  33. Roguet, C., Perrot, C., Gallot, S., & Rieu, M. (2014). Les types d’exploitations agricoles ayant des porcs en France en 2010: Identification, caractéristiques et évolution. Journées Recherche Porcine, 46, 229‑234.
  34. Roos, G., Oláh, J., Ingle, R., Kobayashi, R., & Feldt, M. (2020). Online conferences – Towards a new (virtual) reality. Computational and Theoretical Chemistry, 1189, 112975. doi: 10.1016/j.comptc.2020.112975.
  35. Simons, P.R.-J., Admiraal, W., Akkerman, S., van de Groep, J., & de, M. (2000). How people in virtual groups and communities (fail to) interact, 12.
  36. Sindelar, J.J., & Milkowski, A.L. (2012). Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide, 26(4), 259‑266. doi: 10.1016/j.niox.2012.03.011.
  37. Sobczak, A., & Girard, C. (2006). Des parties prenantes aux parties engagées: Pour une nouvelle lecture de la théorie des stakeholders. In: 1er Congrès du Réseau International de recherche sur les Organisations et le Développement Durable (RIODD). -- https://hal.archives-ouvertes.fr/hal-00757948.
  38. Stepanov, D., Abla, G., Ciarlette, D., Fredian, T., Greenwald, M., Schissel, D.P., & Stillerman, J. (2011). Remote participation in ITER exploitation – Conceptual design. Fusion Engineering and Design, 86(6‑8), 1302‑1305. doi: 10.1016/j.fusengdes.2011.01.120.
  39. Sun, X., Wang, F., Wang, Y., & Li, S. (2017). Data Handling in EAST Remote Participation. IEEE Transactions on Nuclear Science, 64(11), 2891‑2894. doi: 10.1109/TNS.2017.2756631.
  40. Susskind, L.E., McKearnen, S., & Thomas-Lamar, J. (1999). The consensus building handbook: A comprehensive guide to reaching agreement. Sage publications.
  41. Suttrop, W., Kinna, D., Farthing, J., Hemming, O., How, J., & Schmidt, V. (2002). Remote participation at JET Task Force work: Users’ experience. Fusion Engineering and Design, 60(3), 459‑465. doi: 10.1016/S0920-3796(02)00047-9.
  42. Taillandier, P., Salliou, N., & Thomopoulos, R. (2021). Introducing the Argumentation Framework Within Agent-Based Models to Better Simulate Agents’ Cognition in Opinion Dynamics: Application to Vegetarian Diet Diffusion. Journal of Artificial Societies and Social Simulation, 24(2), 6. doi: 10.18564/jasss.4531.
  43. Teffène, O., Rieu, M., Dagorn, J., Mainsant, P., Marouby, H., & Porin, F. (1998). Trente ans d’évolution du secteur porcin en France, 20.
  44. Thomopoulos, R., Baget, J.-F., & Haemmerlé, O. (2007). Conceptual Graphs as Cooperative Formalism to Build and Validate a Domain Expertise. In: U. Priss, S. Polovina, & R. Hill (Éds.), Conceptual Structures: Knowledge Architectures for Smart Applications (Vol. 4604, pp. 112‑125). Springer Berlin Heidelberg. Doi: 10.1007/978-3-540-73681-3_9.
  45. Thomopoulos, R., Destercke, S., Charnomordic, B., Johnson, I., & Abécassis, J. (2013). An iterative approach to build relevant ontology-aware data-driven models. Information Sciences, 221, 452‑472. doi: 10.1016/j.ins.2012.09.015.
  46. Thomopoulos, R., Moulin, B., & Bedoussac, L. (2018). Supporting Decision for Environment-Friendly Practices in the Agri-Food Sector: When Argumentation and System Dynamics Simulation Complete Each Other. International Journal of Agricultural and Environmental Information Systems, 9(3), 1‑21. doi: 10.4018/IJAEIS.2018070101.
  47. Todorov, K., Geibel, P., & Kühnberger, K.-U. (2010). Mining concept similarities for heterogeneous ontologies. Industrial Conference on Data Mining, 86‑100.
  48. van Bruggen, J.M., Boshuizen, H.P.A., & Kirschner, P.A. (2003). A Cognitive Framework for Cooperative Problem Solving with Argument Visualization. In: P.A. Kirschner, S.J. Buckingham Shum, & C.S. Carr (Éds.), Visualizing Argumentation (pp. 25‑47). Springer London. doi: 10.1007/978-1-4471-0037-9_2.

Metrics

Metrics Loading ...