Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Articoli/Articles

V. 15 N. 2 (2024): Intelligenza Artificiale nella scuola e nella formazione universitaria. Rischi e opportunità

Intelligenza generativa artificiale in medical education: ragionamento clinico artificiale vs ragionamento clinico umano

DOI
https://doi.org/10.3280/ess2-2024oa18396
Inviata
29 agosto 2024
Pubblicato
31-01-2025

Abstract

La finalità principale del presente contributo è di illustrare le potenzialità dell’utilizzo dell’intelligenza generativa artificiale (GenAI) in medical education. In particolare, l’autore persegue quattro specifici obiettivi: illustrare le potenzialità di GenAI e nello specifico di LLM (Large Language Model) e GPT-4 (quarta generazione della serie GPT, modello linguistico di grandi dimensioni multimodale) per lo  sviluppo del curriculum in medical education (integrazione di contenuti di conoscenza, personalizzazione degli obiettivi di apprendimento, utilizzo di strumenti didattici innovativi come i pazienti virtuali); documentare il contributo di GenAI nel ragionamento clinico e la necessità di fare riferimento all’intelligenza ibrida, un misto tra le due, dove entrambe svolgono compiti epistemici chiaramente delineati e complementari; effettuare una chiara distinzione tra compiti epistemici del clinical decision support systems (CDSS) e quelli invece propri dell’essere umano, oltre a sottolineare l’importanza del contesto embedded nella elaborazione diagnostica; progettare un teaching framework di ragionamento clinico.

Riferimenti bibliografici

  1. Abd-Alrazaq A., AlSaad R., Alhuwail D., Ahmed A., Healy P.M., Latifi S., Aziz S., Damseh R., Alabed Alrazak S. and Sheikh J. (2023). Large Language Models in Medical Education: Opportunities, Challenges, and Future Directions. JMIR Medical Education, 9, e48291. DOI: 10.2196/48291.
  2. Ahn S. (2023). The impending impacts of large language models on medical education. Korean Journal of Medical Education, 35(1): 103-107. DOI: 10.3946/kjme.2023.253.
  3. Alegría-Bernal C.M., Fernández-Delgado J.C. and Andía-Alegría F.S. (2024). Generative Artificial Intelligence in Clinical Practice: Undergraduate Experience. Evolutionary Studies in Imaginative Culture, 8.2(53): 532-542. DOI: 10.70082/esiculture.vi.1868.
  4. Boon M. (2020). How scientists are brought back into science ‒ the error of empiri-cism. In: Bertolaso M., Sterpetti, F., editors, A Critical Reflection on Automated Science ‒ Will Science Remain Human. Springer Series Human Perspectives in Health Sciences and Technologie (pp. 43-66). Dordrecht, the Nethrlands: Springer.
  5. Cabral S., Restrepo D., Kanjee Z., Wilson P., Crowe B., Abdulnour R-E. and Rodman A. (2024). Clinical Reasoning of a Generative Artificial Intelligence Model Compared With Physicians. Jama Internal Medicine, 184(5): 581-583. DOI: 10.1001/jamainternmed.2024.0295.
  6. Cera R., Mancini M. and Antonietti A. (2013). Relationships between Metacognition, Self-efficacy and Self-regulation in Learning. Educational Cultural and Pshycological Studies, 7: 115-141. Testo diponobile alla pagina: https://www.ledonline.it/index.php/ECPS-Journal/article/view/511/500.
  7. Corsi M., Stramaglia M., Guerra P. and Farina T. (2023a). Humani nihil a me alienum puto. La pedagogia “intera”. Editoriale. Education Science and Society – Open Access, 14(2): 15-22. DOI: 10.3280/ess2-2023oa16890.
  8. Corsi M., Rossi P G., Giannandrea L. and Winstone N. (2023b). Didattica universitaria, innovazione e inclusione. Valutazione e feedback. Editoriale. Education Science and Society – Open Access, 14(1): 9-14. Testo disponibile alla pagina: https://journals.francoangeli.it/index.php/ess/article/view/16109/2351.
  9. Costa M. (2022). Formazione, innovazione e modelli pedagogici per la formazione dei lavoratori. In: Galimberti A., Muschitiello A., a cura di. Pedagogia e lavoro: le sfide tecnologiche. Fano (PU): Aras Edizioni.
  10. d’Aniello F. (2022). Le character skills tra riflessioni critiche e opportunità pedagogica. In: Di Vita, A., a cura di. Orientare nelle transizioni scuola-università-lavoro promuovendo le character skills (pp. 29-42). Lecce: PensaMultimedia.
  11. Eysenbach G. (2023). The role of ChatGPT, generative language models, and artificial intelligence in medical education: a conversation with ChatGPT and a call for papers. JMIR Medical Education, 9, e46885. DOI: 10.2196/46885.
  12. Giannandrea L., Winstone N. (2024). Valutazione e tecnologie. In: Rivoltella P.C. e Rossi P.G., a cura di, Tecnologie per l’educazione – 2/ED (pp. 177-188). Milano: Pearson.
  13. Gilson A., Safranek C.W., Huang T., Socrates V., Chi L., Taylor R.A. and Chartash D. (2023). How does ChatGPT perform on the United States Medical Licensing Examination? The implications of large language models for medical education and knowledge assessment. JMIR Medical Education, 9: 1-9. DOI: 10.2196/45312.
  14. Gratani F., Capolla L.M., Giannandrea L., Screpanti L. and Scaradozzi D. (2023). Facilitating feedback at university using AI-based techniques. In A.A., HELMeTO (pp. 157-159) – BOOK OF ABSTRACTS. STUDIUM s.r.l.
  15. Grunhut J., Marques O. and Wyatt A.T.M. (2022). Needs, challenges, and applica-tions of artificial intelligence in medical education curriculum. JMIR MedIcal Education, 8(2): 1-5. DOI: 10.2196/35587.
  16. Higgs J., Jensen G.M. (2018). Clinical reasoning: challenges of interpretation and practice in the 21st century. In: Higgs J., Jensen G.M, Loftus S. and Christensen N., editors, Clinical reasoning in the health professions. 4th Edition, (pp. 3-11). Amsterdam: Elsevier.
  17. Koufidis C., Manninen K., Nieminen J., Wohlin M. and Silén C. (2022). Representation, interaction and interpretation. Making sense of the context in clinical reasoning. Medical Education, 56: 98-109. DOI: 10.1111/medu.14545.
  18. Krishnan G., Singh S., Pathania M., Gosavi S., Abhishek S., Parchani A and Dhar M. (2023). Artificial intelligence in clinical medicine: catalyzing a sustainable global healthcare paradigm. Frontiers in Artificial Intelligence, 6, 1227091. DOI: 10.3389/frai.2023.1227091.
  19. Rahman N.F.A., Davies N., Suhaimi J., Idris F., Mohamad S.N.S. and Park S. (2023). Transformative learning in clinical reasoning: a meta-synthesis in undergraduate primary care medical education. Education for Primary Care, 34(4): 211-219. DOI: 10.1080/14739879.2023.2248070.
  20. Saban M., Dubovi I. (2024). A comparative vignette study: Evaluating the potential role of a generative AI model in enhancing clinical decision-making in nursing. Leading Global Nursing Research, 00: 1-11. DOI: 10.1111/jan.16146.
  21. Safranek, C.V., Sidamon-Eristoff, A.E., Gilson, A. and Chartash, D. (2023). The Role of Large Language Models in Medical Education: Applications and Implications. JMIR Medical Education, 9: 1-12. DOI: 10.2196/50945.
  22. Savage T., Nayak A., Gallo R., Rangan E. and Chen J.K. (2024). Diagnostic reasoning prompts reveal the potential for large language model interpretability in medicine. npj Digital Medicine, 7(20): 1-7.
  23. Shamy M., Dewar B. and Fedyk M. (2023). Ethical evaluation in acute stroke decision-making. Journal of Evaluation in Clinical Practice, 30(5): 749-755. DOI: 10.1111/jep.13927.
  24. Sinclair M., Ashkanasy N.M. (2005). Intuition: Myth or a Decision-making Tool?. Management Learning, 36(3): 353-370. DOI: 10.1177/1350507605055351.
  25. van Baalen S., Bonn M. (2017). Evidence-based medicine versus expertise ‒ knowledge, skills and epistemic actions. In: Bluhm R., editor, Knowing and Acting in Medicine (pp. 21-38). London, UK: Rowman & Littlefield.
  26. van Baalen S., Boon M. and Verhoef P. (2021). From clinical decision support to clinical reasoning support systems. Journal of Evaluation in Clinical Practice, 27: 520-528. DOI: 10.1111/jep.13541.
  27. Wang L.K.P., Paidisetty P.S. and Cano A.M. (2023). The next paradigm shift? ChatGPT, artificial intelligence, and medical education. Medical Teacher, 45(8): 925. DOI: 10.1080/0142159X.2023.2198663.

Metriche

Caricamento metriche ...