Skip to main navigation menu Skip to main content Skip to site footer

Regular Articles

Early View

The Hidden Harvest: An Efficiency Indicator for Agricultural Residues Production

DOI
https://doi.org/10.3280/ecag2025oa20414
Submitted
giugno 20, 2025
Published
2025-11-17

Abstract

This study assesses the efficiency of agricultural residue production across regions within the framework of a circular economy. The objective is to identify the key factors driving performance and to provide insights for optimising resource use in line with the European Green Deal and the Common Agricultural Policy (2023-2030). We have integrated Data Envelopment Analysis (DEA) with Multi-Criteria Decision Analysis (MCDA-DEA), developing a composite efficiency indicator that enables the design of targeted policies based on the main determinants of regional performance. This indicator was applied to the Poland’s NUTS-2 regions and incorporates variables such as irrigation, agricultural land, employment, machinery, and crop type, allowing for a more refined evaluation of efficiency. Our approach offers a robust tool to support evidence-based policymaking. The findings underscore Poland’s potential to capitalise on significant agricultural residue surpluses for bioenergy and bio-based products, and advocate for tailored policy interventions, integrated evaluation methodologies, and enhanced support to address economic, environmental, and logistical challenges – thereby fostering a resilient circular economy.

References

  1. Alan, H., & Köker, A. R. (2023). Analyzing and mapping agricultural waste recycling research: An integrative review for conceptual framework and future directions. Resources Policy, 85, 103987.
  2. Adamski, M., Pilarski, K., & Dach, J. (2009). Possibilities of usage of the distillery residue as a substrate for agricultural biogas plant.
  3. Alengebawy, A., Ran, Y., Osman, A. I., Jin, K., Samer, M., & Ai, P. (2024). Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: a review. Environmental Chemistry Letters, 1-28.
  4. Awogbemi, O., & Von Kallon, D. V. (2022). Valorization of agricultural wastes for biofuel applications. Heliyon, 8(10).
  5. Banker, R. D., Charnes, A., & Cooper, W.W. (1984). Models for the estimation of technical and scale efficiencies in data envelopment analysis. Management Science, 30, 1078-1092.
  6. Bednarek, A., Klepacka, A. M., Siudek, A. (2023). Development barriers of agricultural biogas plants in Poland. Ekonomia i Środowisko, (1), 229-258.
  7. Bentsen, N. S., Felby, C., & Thorsen, B. J. (2014). Agricultural residue production and potentials for energy and materials services. Progress in energy and combustion science, 40, 59-73.
  8. Carus, M., & Dammer, L. (2018). The circular bioeconomy – concepts, opportunities, and limitations. Industrial biotechnology, 14(2), 83-91.
  9. Chan, J. X., Wong, J. F., Hassan, A., & Zakaria, Z. (2021). Bioplastics from agricultural waste. In: Biopolymers and biocomposites from agro-waste for packaging applications (pp. 141-169). Woodhead Publishing.
  10. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
  11. Coelli, T. J., Prasada Rao, D. S., O’donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and productivity analysis. Boston, MA: Springer US.
  12. Cook, W. D. (2001). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software.
  13. Daioglou, V., Stehfest, E., Wicke, B., Faaij, A., & van Vuuren, D. P. (2016). Projections of the availability and cost of residues from agriculture and forestry. Gcb Bioenergy, 8(2), 456-470.
  14. Doyle, J., and Green, R. (1994). Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. Journal of the operational research society, 45(5), 567-578.
  15. Dyckhoff, H., & Allen, K. (2001). Measuring ecological efficiency with data envelopment analysis (DEA). European Journal of Operational Research, 132(2), 312-325.
  16. European Bioplastics (2024). Bioplastics Market Development Update 2024.
  17. European Commission (2022). Poland’s CAP Strategic Plan. -- agriculture.ec.europa.eu.
  18. Fare, R., Grosskopf, S., & Lovell, C. K. (1994). Production frontiers. Cambridge university press.
  19. Fusco, G., Campobasso, F., Laureti, L., Frittelli, M., Valente, D., & Petrosillo, I. (2023). The environmental impact of agriculture: An instrument to support public policy. Ecological Indicators, 147, 109961.
  20. Gomes, E. G., & Lins, M. P. E. (2008). Modelling undesirable outputs with zero sum gains data envelopment analysis models. Journal of the Operational Research Society, 59(5), 616-623.
  21. Gontard, N., Sonesson, U., Birkved, M., Majone, M., Bolzonella, D., Celli, A., … & Sebok, A. (2018). A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical reviews in environmental science and technology, 48(6), 614-654.
  22. Guddaraddi, A., Singh, A., Amrutha, G., Saikanth, D. R. K., Kurmi, R., Singh, G., …, Singh, B. V. (2023). Sustainable biofuel production from agricultural residues an eco-friendly approach: a review. Int J Environ Clim Change, 13(10), 2905-2914.
  23. Härri, A., Levänen, J., & Malik, K. (2023). How can we build inclusive circular supply chains? Examining the case of agricultural residue usage in India. Business Strategy & Development, 6(4), 641-654.
  24. Hatefi, S. M., & Torabi, S. A. (2010). A common weight MCDA-DEA approach to construct composite indicators. Ecological Economics, 70(1), 114-120.
  25. Havrysh, V., Kalinichenko, A., Brzozowska, A., & Stebila, J. (2021). Agricultural residue management for sustainable power generation: the Poland case study. Applied Sciences, 11(13), 5907.
  26. Jezierska-Thöle, A., Rudnicki, R., & Kluba, M. (2016). Development of energy crops cultivation for biomass production in Poland. Renewable and Sustainable Energy Reviews, 62, 534-545.
  27. Kapoor, R., Ghosh, P., Kumar, M., Sengupta, S., Gupta, A., Kumar, S. S., …, Pant, D. (2020). Valorisation of agricultural waste for biogas based circular economy in India: A research outlook. Bioresource Technology, 304, 123036.
  28. Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285.
  29. Kumar Sarangi, P., Subudhi, S., Bhatia, L., Saha, K., Mudgil, D., Prasad Shadangi, K., & Arya, R. K. (2023). Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environmental Science and Pollution Research, 30(4), 8526-8539.
  30. Łuczka, W., & Kalinowski, S. (2020). Barriers to the development of organic farming: A polish case study. Agriculture, 10(11), 536.
  31. Marks-Bielska, R., Bielski, S., Novikova, A., & Romaneckas, K. (2019). Straw stocks as a source of renewable energy. A case study of a district in Poland. Sustainability, 11(17), 4714.
  32. Medina, J., Monreal, C., Barea, J. M., Arriagada, C., Borie, F., & Cornejo, P. (2015). Crop residue stabilization and application to agricultural and degraded soils: A review. Waste Management, 42, 41-54.
  33. Melendez, J. R., Mátyás, B., Hena, S., Lowy, D. A., & El Salous, A. (2022). Perspectives in the production of bioethanol: a review of sustainable methods, technologies, and bioprocesses. Renewable and Sustainable Energy Reviews, 160, 112260.
  34. Onyszkiewicz, M. (2024). Current Status of the Community-Supported Agriculture Model in Poland. Sustainability, 16(22), 9889.
  35. Pawłowski, K. P., & Sołtysiak, G. (2024). The Potential Impact of the European Green Deal on Farm Production in Poland. Sustainability (2071-1050), 16(24).
  36. Prateep Na Talang, R., Na Sorn, W., Polruang, S., & Sirivithayapakorn, S. (2024). Alternative crop residue management practices to mitigate the environmental and economic impacts of open burning of agricultural residues. Scientific Reports, 14(1), 14372.
  37. Rajput, V. D., Minkina, T., Ahmed, B., Singh, V. K., Mandzhieva, S., Sushkova, S., …, Wang, B. (2022). Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. Environmental Research, 210, 112891.
  38. Rao, M. M., Botsa, S. M., Rao, T. P., Goddu, S. R., & Vijayasanthi, C. (2024). A comprehensive review on agricultural waste production and onsite management with circular economy opportunities. Discover Sustainability, 5(1), 288.
  39. Ronzon, T., & M’Barek, R. (2018). Socioeconomic indicators to monitor the EU’s bioeconomy in transition. Sustainability, 10(6), 1745.
  40. Rosenboom, J. G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7(2), 117-137.
  41. Saha, S., Sharma, A., Purkayastha, S., Pandey, K., & Dhingra, S. (2019). Bioplastics and biofuel: is it the way in future development for end users? In: Plastics to energy (pp. 365-376). William Andrew Publishing.
  42. Santana-Méridas, O., González-Coloma, A., & Sánchez-Vioque, R. (2012). Agricultural residues as a source of bioactive natural products. Phytochemistry reviews, 11, 447-466.
  43. Sarkar, S., Skalicky, M., Hossain, A., Brestic, M., Saha, S., Garai, S., … & Brahmachari, K. (2020). Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability, 12(23), 9808.
  44. Sawinska, Z., Świtek, S., Głowicka-Wołoszyn, R., & Kowalczewski, P. Ł. (2020). Agricultural practice in Poland before and after mandatory IPM implementation by the European Union. Sustainability, 12(3), 1107.
  45. Sherwood, J. (2020). The significance of biomass in a circular economy. Bioresource technology, 300, 122755.
  46. Skevas, I. (2025). Technical and environmental inefficiency measurement in agriculture using a flexible by‐production stochastic frontier model. Journal of Agricultural Economics, 76(1), 164-181.
  47. Skjærseth, J. B. (2021). Towards a European Green Deal: The evolution of EU climate and energy policy mixes. International Environmental Agreements: Politics, Law and Economics, 21(1), 25-41.
  48. Skoutida, S., Malamakis, A., Geroliolios, D., Karkanias, C., Melas, L., Batsioula, M., & Banias, G. F. (2024). The Latent Potential of Agricultural Residues in Circular Economy: Quantifying their Production Destined for Prospective Energy Generation Applications. BioEnergy Research, 18(1), 11.
  49. Smerald, A., Rahimi, J., & Scheer, C. (2023). A global dataset for the production and usage of cereal residues in the period 1997-2021. Scientific data, 10(1), 685.
  50. Söderholm, P. (2020). The green economy transition: the challenges of technological change for sustainability. Sustainable Earth, 3(1), 6.
  51. Stanek, P., Żółkiewski, P., Teter, W., Chabuz, W., Litwińczuk, Z., & Bochniak, A. (2018). The role of main fodder area as a factor limiting the development of farms under conditions of sustainable agriculture. A case study from the Podkarpacie region (southern Poland, Western Carpathians). Agroecology and Sustainable Food Systems, 42(5), 477-492.
  52. Suardi, A., Bergonzoli, S., Alfano, V., Scarfone, A., & Pari, L. (2019). Economic distance to gather agricultural residues from the field to the integrated biomass logistic centre: A Spanish case-study. Energies, 12(16), 3086.
  53. Toma, P., Miglietta, P. P., Zurlini, G., Valente, D., & Petrosillo, I. (2017). A nonparametric bootstrap-data envelopment analysis approach for environmental policy planning and management of agricultural efficiency in EU countries. Ecological indicators, 83, 132-143.
  54. Torres-León, C., Ramírez-Guzman, N., Londoño-Hernandez, L., Martinez- Medina, G. A., Díaz-Herrera, R., Navarro-Macias, V., …, Aguilar, C. N. (2018). Food waste and byproducts: An opportunity to minimize malnutrition and hunger in developing countries. Frontiers in sustainable food systems, 2, 52.
  55. Velasco-Muñoz, J. F., Aznar-Sánchez, J. A., López-Felices, B., & Román- Sánchez, I. M. (2022). Circular economy in agriculture. An analysis of the state of research based on the life cycle. Sustainable Production and Consumption, 34, 257-270.
  56. Wang, G., Zhao, M., Zhao, B., Liu, X., & Wang, Y. (2025). Reshaping Agriculture Eco-efficiency in China: From Greenhouse Gas Perspective. Ecological Indicators, 172, 113268.
  57. Xu, R., Chen, J., Yan, N., Xu, B., Lou, Z., & Xu, L. (2025). High-value utilization of agricultural residues based on component characteristics: potentiality and challenges. Journal of Bioresources and Bioproducts.
  58. Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475-501.
  59. Zgut, E. (2022). Informal exercise of power: undermining democracy under the EU’s radar in Hungary and Poland. Hague Journal on the Rule of Law, 14(2), 287-308.
  60. Zhang, B., Bi, J., Fan, Z., Yuan, Z., Ge J. (2008). Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecological Economics, 68(1-2), 306-316. Doi: 10.1016/j.ecolecon.2008.03.009.