Skip to main navigation menu Skip to main content Skip to site footer

Regular Articles

Vol. 26 No. 2 (2024)

Reasons for milking system adoption: The case of Switzerland

DOI
https://doi.org/10.3280/ecag2024oa17527
Submitted
marzo 21, 2024
Published
2024-10-03

Abstract

This paper studies the importance which farm managers attach to the investment in the milking system in terms of their (management) objectives and expectations. According to a survey of 455 Swiss farm managers, the main reasons for investment decisions for all milking systems were to reduce labour and physical stress. For parlours, income objectives and animal welfare were more important than for other milking systems. In the case of automatic milking systems (AMS), the focus was on making working hours more flexible and increasing family time. According to farm managers, these objectives were largely achieved. The study shows, that higher income or production volume become less important reasons over the observed time period and that AMS are implemented by older farm managers.

References

  1. Agristat (2021). Milchstatistik 2020. -- www.sbv-usp.ch/fileadmin/user_upload/MISTA2020_def_online.pdf.
  2. Bocken, N.M., Short, S.W., Rana, P., & Evans, S. (2014). A literature and practice review to develop sustainable business model archetypes. Journal of Cleaner Production, 65, 42-56. Doi: 10.1016/j.jclepro.2013.11.039.
  3. Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370. Doi: 10.1007/BF02294361.
  4. Clark, G.L., Feiner, A., & Viehs, M. (2015). From the stockholder to the stakeholder: How sustainability can drive financial outperformance. Doi: 10.2139/ssrn.2508281.
  5. El Benni, N., & Finger, R. (2013). The effect of agricultural policy reforms on income inequality in Swiss agriculture - An analysis for valley, hill and mountain regions. Journal of Policy Modeling, 35(4), 638-651. Doi: 10.1016/j.jpolmod.2012.03.005.
  6. FOAG (2023). Agrarbericht 2023. -- www.agrarbericht.ch/de/betrieb/strukturen/betriebe.
  7. Frick, F., & Sauer, J. (2021). Technological change in dairy Farming with increased price volatility. Journal of Agricultural Economics, 72(2), 564-588. Doi: 10.1111/1477-9552.12417.
  8. Gallardo, R.K., & Sauer, J. (2018). Adoption of labor-saving technologies in agriculture. Annual Review of Resource Economics, 10, 185-206. Doi: 10.1146/annurev-resource-100517-023018.
  9. Gazzarin, C., & Nydegger, F. (2014). How profitable are robots? Costs and benefits of automated devices in dairy-cow husbandry. Agroscope Transfer, 3.
  10. Gygax, L., Neuffer, I., Kaufmann, C., Hauser, R., & Wechsler, B. (2006). Milk cortisol concentration in automatic milking systems compared with auto-tandem milking parlors. Journal of dairy science, 89(9), 3447-3454. Doi: 10.3168/jds.S0022-0302(06)72382-7.
  11. Hansen, B.G. (2015). Robotic milking-farmer experiences and adoption rate in Jæren, Norway. Journal of Rural Studies, 41, 109-117. Doi: 10.1016/j.jrurstud.2015.08.004.
  12. Hogeveen, H., Heemskerk, K., & Mathijs, E. (2004). Motivations of Dutch farmers to invest in an automatic milking system or a conventional milking parlour. Automatic milking: A better understanding, 56-61.
  13. Hoop, D., Schiltknecht, P., Dux-Bruggmann, D., Jan, P., Renner, S., & Schmid, D. (2021). Landwirtschaftliche Einkommensstatistik 2020. Agroscope. Doi: 10.34776/eink21-d.
  14. Hosmer Jr, D.W., Lemeshow, S., & Sturdivant, R.X. (2013). Applied logistic regression. John Wiley & Sons.
  15. Lage, C.F.d.A., Marques, T.C., Bruno, D.R., Endres, M.I., Ferreira, F., Pires, A.P. A., Leão, K., & de Lima, F.S. (2024). Farmers’ Perceptions on Implementing Automatic Milking Systems in Large USA Dairies: Decision-Making Process, Management Practices, Labor, and Herd Performance. Animals, 14(2), 218. Doi: 10.3390/ani14020218.
  16. Kozak, O., Renner, S., Jan, P., & Gazzarin, C. (2022). World dairy market: Challenges and opportunities: Main findings of the 23rd IFCN Dairy Conference 2022. Agroscope Science, 140, 5. Doi: 10.34776/as140.
  17. Martin, T., Gasselin, P., Hostiou, N., Feron, G., Laurens, L., Purseigle, F., & Ollivier, G. (2022). Robots and transformations of work in farm: A systematic review of the literature and a research agenda. Agronomy for Sustainable Development, 42(4), 66. Doi: 10.1007/s13593-022-00796-2.
  18. Michler, J.D., Tjernström, E., Verkaart, S., & Mausch, K. (2019). Money Matters: The Role of Yields and Profits in Agricultural Technology Adoption. American Journal of Agricultural Economics, 101(3), 710-731. Doi: 10.1093/ajae/aay050.
  19. Moyes, K.M., Ma, L., McCoy, T.K., & Peters, R.R. (2014). A survey regarding the interest and concern associated with transitioning from conventional to automated (robotic) milking systems for managers of small-to medium-sized dairy farms. The Professional Animal Scientist, 30(4), 418-422. Doi: 10.15232/pas.2014-01327.
  20. OECD (2020). Agricultural policy monitoring and evaluation 2020. Doi: 10.1787/928181a8-en.
  21. Renner, S., Jan, P., Hoop, D., Schmid, D., Dux, D., Weber, A., & Lips, M. (2019). Survey system of the Swiss Farm Accountancy Data Network with two samples: Income Situation sample and Farm Management Sample: Income Situation sample and Farm Management sample. Agroscope Science, (68). -- https://ira.agroscope.ch/en-US/publication/40324.
  22. Stoneman, P., & Kwon, M.J. (1996). Technology Adoption and Firm Profitability. The Economic Journal, 106(437), 952-962. Doi: 10.2307/2235366.
  23. Vik, J., Stræte, E.P., Hansen, B.G., & Nærland, T. (2019). The political robot – The structural consequences of automated milking systems (AMS) in Norway. NJAS - Wageningen Journal of Life Sciences, 90-91, 100305. Doi: 10.1016/j.njas.2019.100305.
  24. Zorn, A. (2020). Kennzahlen des Strukturwandels der Schweizer Landwirtschaft auf Basis einzelbetrieblicher Daten. Agroscope Science, 88, 1-58. Doi: 10.34776/as88g.
  25. Zorn, A., & Zimmert, F. (2022). Structural change in the dairy sector: Exit from farming and farm type change. Agricultural and Food Economics, 10(7), 1-31. Doi: 10.1186/s40100-022-00212-z.

Metrics

Metrics Loading ...