Skip to main navigation menu Skip to main content Skip to site footer

Regular Articles

Vol. 24 No. 3 (2022)

Factors influencing the use of non-timber forest products in cattle production under humid tropical conditions

DOI
https://doi.org/10.3280/ecag2022oa12566
Submitted
settembre 20, 2021
Published
2022-11-15

Abstract

As more attention is paid to the integral management and the problems of cattle production systems in the achievement of sustainable productivity and competitiveness in the territories of the Colombian Amazon region, it is necessary to determine the socioeconomic factors that affect the use of the potential and comparative advantages of productive units located in the region for nutritional supplementation from local inputs, such as Non Timber Forest Products (NTFP). For this purpose, a descriptive-cross-sectional scope with non-experimental design and quantitative approach study was carried out, applying the collection instrument to the sample size defined in a nonprobabilistic way in the municipalities of Albania San Vicente del Caguán, El Doncello, Puerto Rico, and Cartagena del Chaira of the department of Caquetá Colombia. Information was systematized using the R software, where the principal component analysis of the socioeconomic factors with the use of cattle nutrition in the NTFP was carried out. It was found that the factors that have the greatest impact on the use of NTFP are related to the degree of knowledge about NTFP and the strategies for the transfer of scientific knowledge as a complement to the knowledge of the producers.

References

  1. Alves-Pinto, H.N., Latawiec, A.E., Strassburg, B.B., Barros, F.S., Sansevero, J.B., Iribarrem, A., & Silva, A.C. (2017). Reconciling rural development and ecological restoration: Strategies and policy recommendations for the Brazilian Atlantic Forest. Land Use Policy, 60, 419-426. doi: 10.1016/j.landusepol.2016.08.004.
  2. Avendaño, R.B., & Schwentesius, R.R. (2005). Factores de competitividad en la producción y exportación de hortalizas: el caso del valle de Mexicali, B.C., México. Problemas del Desarrollo, 36(140), 165-192.
  3. Bawa, K.S., Joseph, G., & Setty, S. (2007). Poverty, biodiversity and institutions in forest-agriculture ecotones in the Western Ghats and Eastern Himalaya ranges of India, Agriculture, Ecosystems & Environment, 121(3), 287-295. doi: 10.1016/j.agee.2006.12.023.
  4. Comité Departamental de Ganaderos del Caquetá (2020). Cifras de Contexto Ganadero Caquetá 2020. -- https://issuu.com/rafaeltorrijos/docs/contexto_ganadero_caqueta_2020.
  5. Dash, M., Behera, B., & Rahut, D.B. (2016). Determinants of household collection of non-timber forest products (NTFPs) and alternative livelihood activities in Similipal Tiger Reserve, India. Forest Policy and Economics, 73, 215-228. doi: 10.1016/j.forpol.2016.09.012.
  6. FAO (2014). El estado de los bosques del mundo. Potenciar los beneficios socioeconómicos de los bosques. 1 ed. Roma (Italia), pp. 20-49.
  7. Fonseca, C.J.A., Muñóz, P.N.A., & Cleves, L.J.A. (2011). El sistema de gestión de calidad: elemento para la competitividad y la sostenibilidad de la producción agropecuaria colombiana. Revista de Investigación Agraria y Ambiental, 2(1), 9-22. doi: 10.22490/21456453.909.
  8. Gupta, D., Lele, S., & Sahu, G. (2020). Promoting a responsive state: The role of NGOs in decentralized forest governance in India. Forest Policy and Economics, 111, 102066. doi: 10.1016/j.forpol.2019.102066.
  9. Hernández-Sampieri, R., & Torres, C.P.M. (2018). Metodología de la investigación (Vol. 4). México^ eD. F DF: McGraw-Hill Interamericana.
  10. Heubach, K., Wittig, R., Nuppenau, E.-A., & Hahn, K. (2011). The economic importance of non-timber forest products (NTFPs) for livelihood maintenance of rural west African communities: A case study from northern Benin. Ecological Economics, 70(11), 1991-2001. doi: 10.1016/j.ecolecon.2011.05.015.
  11. Hogarth, N.J., Belcher, B., Campbell, B., & Stacey, N. (2013). The Role of Forest-Related Income in Household Economies and Rural Livelihoods in the Border-Region of Southern China. World Development, 43, 111-123. doi: 10.1016/j.worlddev.2012.10.010.
  12. Husson, F., Josse, J., Le, S., & Maintainer, J.M. (2016). Package “FactoMineR.” Multivariate Exploratory Data Analysis and Data Mining, 96, 698. -- https://cran.rediris.es/web/packages/FactoMineR/FactoMineR.pdf.
  13. Kar, S.P., & Jacobson, M.G. (2012). NTFP income contribution to household economy and related socio-economic factors: Lessons from Bangladesh. Forest Policy and Economics, 14(1), 136-142. doi: 10.1016/j.forpol.2011.08.003.
  14. Kassambara, A., & Mundt, F. (2017). Package ‘factoextra’. Extract and Visualize the Results of Multivariate Data Analyses, 76. -- https://cran.microsoft.com/snapshot/2016-11-30/web/packages/factoextra/factoextra.pdf.
  15. Khosravi, S., Maleknia, R., & Khedrizadeh, M. (2017). Understanding the Contribution of Non-timber Forest Products to the Livelihoods of Forest Dwellers in the Northern Zagros in Iran. Small-scale Forestry, 16, 235-248. doi: 10.1007/s11842-016-9353-y.
  16. Lakerveld, R.P., Lele, S., Crane, T.A., Fortuin, K.P.J., & Springate-Baginski, O. (2015). The social distribution of provisioning forest ecosystem services: Evidence and insights from Odisha, India. Ecosystem Services, 14, 56-66. doi: 10.1016/j.ecoser.2015.04.001.
  17. Nassl, M., & Löffler, J. (2019). How Societal Values Determine the Local Use of Forest Resources – Findings from the Rural Community Kegong (Northwest Yunnan, China). Sustainability, 11(12), 3447. doi: 10.3390/su11123447.
  18. Osorio, L.F. (2014). Silvopastoreo. Colombia forestal, 17, 73-75.
  19. Pardo, O., Fornaguera, J.E.C., & Hess, H.D. (2008). Efecto de la relación proteína y energía sobre los niveles de amonio ruminal y nitrógeno ureico en sangre y leche de vacas doble propósito del piedemonte llanero, Colombia. Revista Colombiana de Ciencias Pecuarias, 21(3), 6.
  20. R Core Team (2021). R: A Language and Environment for Statistical Computing. -- www.r-project.org.
  21. RStudio Team (2021). RStudio: Integrated Development Environment for R. -- www.rstudio.com.
  22. SMBYC, IDEAM (2018). Sistema de Monitoreo de bosques y carbono -- Recuperado: http://smbyc.ideam.gov.co/MonitoreoBC-WEB/pub/reporteGeoproceso.jsp?id_reporte=7123.
  23. Stellian, R., & Danna-Buitrago, J.P. (2017). Competitividad de los productos agropecuarios colombianos en el marco del tratado de libre comercio con los Estados Unidos: análisis de las ventajas comparativas. Revista Cepal.
  24. Stepakova, N.N., Kiseleva, T.F., Koryakina, N.A., Frolova, N.A., & Reznichenko, Y.Y. (2019). Food forest resources as a component of environmental management. IOP Conference Series: Earth and Environmental Science: Earth and Environmental Science, 315, 052046–. doi: 10.1088/1755-1315/315/5/052046.
  25. Wei, T., & Simko, V. (2021). R package “corrplot”: Visualization of a Correlation Matrix (Version 0.90). -- https://github.com/taiyun/corrplot.
  26. Weiss, E., Corradini, & Živojinović (2020). New Values of Non-Wood Forest Products, 11(2), 165. doi: 10.3390/f11020165.

Metrics

Metrics Loading ...