Skip to main navigation menu Skip to main content Skip to site footer

Regular Articles

No. 2 (2022)

Remembering sounds in the brain: From locationist findings to dynamic connectivity research

giugno 21, 2022


Our world is full of sounds, either verbal or non-verbal, pleasant or unpleasant, meaningful or simply irrelevant noise. Understanding, memorizing, and predicting the sounds, even non-verbal ones which our environment is full of, is a complex perceptuo-cognitive function that we constantly refine by everyday experience and learning. Musical sounds are a peculiar case due to their culture-dependent complexity and hierarchical organization requiring cognitive functions such as memory to be understood, and due to the presence of individuals (musicians) who dedicate their lifetime to master the specifics of those sounds and rules. Thus far, most of the neuroimaging research focused on verbal sounds and how they are processed and stored in the human brain. Only recently, researchers have tried to elucidate the neural mechanisms and structures allowing non-verbal, musical sounds to be modeled, predicted and remembered. However, those neuroimaging studies often provide only a mere snapshot of a complex dynamic process unfolding over time. To capture the complexity of musical memory and cognition, new methods are needed. A promising analysis method is dynamic functional connectivity, which assumes that functional connectivity changes in a short time. We conclude that moving from a locationist to a dynamic perspective on auditory memory might allow us to finally comprehend the neural mechanisms that regulate encoding and retrieval of sounds.


  1. Aggleton, J. P., & Brown, M. W. (2006). Interleaving brain systems for episodic and recognition memory. Trends in cognitive sciences, 10(10), 455-463. Doi: 10.1016/j.tics.2006.08.003.
  2. Alho, K., Paavilainen, P., Reinikainen, K., Sams, M., & Näätänen, R. (1986). Separability of different negative components of the event-related potential associated with auditory stimulus processing. Psychophysiology, 23(6), 613-623. Doi: 10.1111/j.1469-8986.1986.tb00680.x
  3. Alías, F., Socoró, J. C., & Sevillano, X. (2016). A review of physical and perceptual feature extraction techniques for speech, music and environmental sounds. Applied Sciences, 6(5), 143.
  4. Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral cortex, 24(3), 663-676. Doi: 10.1093/cercor/bhs352.
  5. Altenmüller, E., & Furuya, S. (2017). Apollos gift and curse: making music as a model for adaptive and maladaptive plasticity. e-Neuroforum, 23(2), 57-75. Doi: 10.1515/nf-2016-A054.
  6. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Psychology of learning and motivation (Vol. 2, pp. 89-195). San Diego, CA: Academic Press. Doi: 10.1016/S0079-7421(08)60422-3.
  7. Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.
  8. Baddeley, A., Eysenck, M. W., & Anderson, M. C. (2020). Memory (3rd ed.). London: Routledge. Doi: 10.4324/9780429449642.
  9. Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of learning and motivation (Vol. 8, pp. 47-89). Academic press. Doi: 10.1016/S0079-7421(08)60452-1.
  10. Baird, A., & Samson, S. (2009). Memory for music in Alzheimer’s disease: unforgettable?. Neuropsychology review, 19(1), 85-101. Doi: 10.1007/s11065-009-9085-2.
  11. Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M., & Grafton, S. T. (2011). Conserved and variable architecture of human white matter connectivity. Neuroimage, 54(2), 1262-1279. Doi: 10.1016/j.neuroimage.2010.09.006.
  12. Bendixen, A., Schröger, E., & Winkler, I. (2009). I heard that coming: event-related potential evidence for stimulus-driven prediction in the auditory system. Journal of Neuroscience, 29(26), 8447-8451. Doi: 10.1523/jneurosci.1493-09.2009.
  13. Bigelow, J., & Poremba, A. (2014). Achilles’ ear? Inferior human short-term and recognition memory in the auditory modality. PloS One, 9(2), e89914. Doi: 10.1371/journal.pone.0089914.
  14. Billig, A. J., Lad, M., Sedley, W., & Griffiths, T. D. (2022). The hearing hippocampus. Progress in Neurobiology, 102326. Doi: 10.1016/j.pneurobio.2022.102326
  15. Bonetti, L., Bruzzone, S. E. P., Sedghi, N. A., Haumann, N. T., Paunio, T., Kantojärvi, K., ... & Brattico, E. (2021a). Brain predictive coding processes are associated to COMT gene Val158Met polymorphism. NeuroImage, 233, 117954.
  16. Bonetti, L., Brattico, E., Carlomagno, F., Cabral, J., Stevner, A., Deco, G., ... & Kringelbach, M. L. (2020). Spatiotemporal whole-brain dynamics of auditory patterns recognition. BioRxiv. Doi: 10.1101/2020.06.23.165191.
  17. Bonetti, L., Brattico, E., Bruzzone, S. E., Donati, G., Deco, G., Pantazis, D., ... & Kringelbach, M. L. (2021b). Temporal pattern recognition in the human brain: a dual simultaneous processing. BioRxiv. Doi: 10.1101/2021.10.21.465263.
  18. Bonetti, L., Brattico, E., Carlomagno, F., Donati, G., Cabral, J., Haumann, N. T., ... & Kringelbach, M. L. (2021c). Rapid encoding of musical tones discovered in whole-brain connectivity. NeuroImage, 118735. Doi: 10.1016/j.neuroimage.2021.118735.
  19. Brattico, E. (2019). The neuroaesthetics of music: A research agenda coming of age. In M. H. Thaut & D. A. Hodges (eds.), The Oxford Handbook of Music and the Brain (pp. 364-390). Oxford: Oxford University Press.
  20. Brattico, E., Bogert, B., & Jacobsen, T. (2013). Toward a neural chronometry for the aesthetic experience of music. Frontiers in Psychology, 4, 206. Doi: 10.3389/fpsyg.2013.00206.
  21. Brattico, E., Bonetti, L., Ferretti, G., Vuust, P., & Matrone, C. (2021). Putting cells in motion: advantages of endogenous boosting of BDNF production. Cells, 10(1), 183.
  22. Brattico, E., Näätänen, R., & Tervaniemi, M. (2001). Context effects on pitch perception in musicians and nonmusicians: Evidence from event-relatedpotential recordings. Music Perception, 19(2), 199-222. Doi: 10.1525/mp.2001.19.2.199.
  23. Brattico, E., Pallesen, K. J., Varyagina, O., Bailey, C., Anourova, I., Järvenpää, M., ... & Tervaniemi, M. (2009). Neural discrimination of nonprototypical chords in music experts and laymen: an MEG study. Journal of Cognitive Neuroscience, 21(11), 2230-2244. Doi: 10.1162/jocn.2008.21144.
  24. Brattico, E., Tervaniemi, M., & Picton, T. W. (2003). Effects of brief discrimination-training on the auditory N1 wave. Neuroreport, 14(18), 2489-2492. Doi: 10.1097/00001756-200312190-00039.
  25. Brattico, E., & Varankaitė, U. (2019). Aesthetic empowerment through music. Musicae Scientiae, 23(3), 285-303. Doi: 10.1177/1029864919850606.
  26. Brenner, C. A., Krishnan, G. P., Vohs, J. L., Ahn, W. Y., Hetrick, W. P., Morzorati, S. L., & O’Donnell, B. F. (2009). Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Schizophrenia Bulletin, 35(6), 1065-1077. Doi: 10.1093/schbul/sbp091.
  27. Broadbent, D. E. (1958). Perception and communication. New York: Pergamon Press.
  28. Bruzzone, S. E. P., Lumaca, M., Brattico, E., Vuust, P., Kringelbach, M. L., & Bonetti, L. (2022). Dissociated brain functional connectivity of fast versus slow frequencies underlying individual differences in fluid intelligence: a DTI and MEG study. Scientific Reports, 12(1), 1-15. Doi: 10.1038/s41598-022-08521-5.
  29. Buckner, R. L., Krienen, F. M., & Yeo, B. T. (2013). Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neuroscience, 16(7), 832-837. Doi: 10.1038/nn.3423.
  30. Burunat, I., Alluri, V., Toiviainen, P., Numminen, J., & Brattico, E. (2014). Dynamics of brain activity underlying working memory for music in a naturalistic condition. Cortex, 57, 254-269. Doi: 10.1016/j.cortex.2014.04.012.
  31. Butler, R. A. (1968). Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. The Journal of the Acoustical Society of America, 44(4), 945-950. Doi: 10.1121/1.1911233.
  32. Butler, R. A. (1972a). Frequency specificity of the auditory evoked response to simultaneously and successively presented stimuli. Electroencephalography and Clinical Neurophysiology, 33(3), 277-282. Doi: 10.1016/0013-4694(72)90154-X.
  33. Butler, R. A. (1972b). The auditory evoked response to stimuli producing periodicity pitch. Psychophysiology, 9(2), 233-237. Doi: 10.1111/j.1469-8986.1972.tb00758.x.
  34. Calhoun, V. D., Miller, R., Pearlson, G., & Adalı, T. (2014). The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262-274. Doi: 10.1016/j.neuron. 2014.10.015.
  35. Cauda, F., D’Agata, F., Sacco, K., Duca, S., Geminiani, G., & Vercelli, A. (2011). Functional connectivity of the insula in the resting brain. NeuroImage, 55(1), 8-23. Doi: 10.1016/j.neuroimage.2010.11.049.
  36. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(03), 181e204. Doi: 10.1017/S0140525X12000477.
  37. Cohen, M. A., Horowitz, T. S., & Wolfe, J. M. (2009). Auditory recognition memory is inferior to visual recognition memory. Proceedings of the National Academy of Sciences, 106(14), 6008-6010. Doi: 10.1073/pnas.0811884106.
  38. Costa-Faidella, J., Baldeweg, T., Grimm, S., & Escera, C. (2011). Interactions between “what” and “when” in the auditory system: temporal predictability enhances repetition suppression. Journal of Neuroscience, 31(50), 18590-18597. Doi: 10.1523/JNEUROSCI.2599-11.2011.
  39. Cowan, N. (1984). On short and long auditory stores. Psychological Bulletin, 96(2), 341. Doi: 10.1037/0033-2909.96.2.341.
  40. Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163. Doi: 10.1037/0033-2909.104.2.163.
  41. Cowan, N. (1998). Attention and memory: An integrated framework. Oxford: Oxford University Press.
  42. Cowan, N. (1999). An embedded-processes model of working memory. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, 20, 506. Doi: 10.1017/CBO9781139174909.006.
  43. Cowan, N., Winkler, I., Teder, W., & Näätänen, R. (1993). Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(4), 909. Doi: 10.1037/0278-7393.19.4.909.
  44. Criscuolo, A., Pando-Naude, V., Bonetti, L., Vuust, P., Brattico, E. (2022). An ALE meta-analytic review of musical expertise. BioRxiv. Doi: 10.1101/2021.03.12.434473.
  45. Crowder, R. G. (1989). Imagery for musical timbre. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 472. Doi: 10.1037/0096-1523.15.3.472.
  46. Cuddy, L. L., Sikka, R., Silveira, K., Bai, S., & Vanstone, A. (2017). Musicevoked autobiographical memories (MEAMs) in Alzheimer disease: Evidence for a positivity effect. Cogent Psychology, 4(1), 1277578. Doi: 10.1080/23311908.2016.1277578.
  47. Dehaene, S., Meyniel, F., Wacongne, C., Wang, L., & Pallier, C. (2015). The neural representation of sequences: from transition probabilities to algebraic patterns and linguistic trees. Neuron, 88(1), 2-19. Doi: 10.1016/j.neuron.2015.09.019.
  48. Deliege, I. (1987). Grouping conditions in listening to music: An approach to Lerdahl & Jackendoff’s grouping preference rules. Music Perception, 4(4), 325-359. Doi: 10.2307/40285378.
  49. Deutsch, D. (1972). Octave generalization and tune recognition. Perception & Psychophysics, 11(6), 411-412. Doi: 10.3758/BF03206280.
  50. Deutsch, D. (1975). The organization of short-term memory for a single acoustic attribute. Short-term Memory, 107-151.
  51. Deutsch, D. (1999). The processing of pitch combinations. In The psychology of music (pp. 349-411). San Diego, CA: Academic Press.
  52. Deutsch, D., & Feroe, J. (1981). The internal representation of pitch sequences in tonal music. Psychological Review, 88(6), 503. Doi: 10.1037/0033-295X.88.6.503.
  53. DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition?. Neuron, 73(3), 415-434. Doi: 10.1016/j.neuron.2012.01.010.
  54. Dowling, W. J. (1978). Scale and contour: Two components of a theory of memory for melodies. Psychological Review, 85(4), 341. Doi: 10.1037/0033-295X.85.4.341.
  55. Dowling, W. J., Tillman, B., & Ayers, D. F. (2002). Memory and the experience of hearing music. Music Perception, 19(2), 249-276. Doi: 10.1525/mp.2001.19.2.249.
  56. Euler, C. V., & Ricci, G. F. (1958). Cortical evoked responses in auditory area and significance of apical dendrites. Journal of Neurophysiology, 21(3), 231-246. Doi: 10.1152/jn.1958.21.3.231.
  57. Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4. Doi: 10.3389/fnhum.2010.00215.
  58. Fernández-Rubio, G., Carlomagno, F., Vuust, P., Kringelbach, M. L., & Bonetti, L. (2022). Associations between abstract working memory abilities and brain activity underlying long-term recognition of auditory sequences. PNAS Nexus, 1(4), 216. Doi: 10.1101/2022.05.19.492607.
  59. FitzGerald, T. H., Dolan, R. J., & Friston, K. J. (2014). Model averaging, optimal inference, and habit formation. Frontiers in Human Neuroscience, 8, 457. Doi: 10.3389/fnhum.2014.00457.
  60. Fornito, A., & Bullmore, E. T. (2012). Connectomic intermediate phenotypes for psychiatric disorders. Frontiers in Psychiatry, 3, 32. Doi: 10.3389/fpsyt.2012.00032.
  61. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700-711. Doi: 10.1038/nrn2201.
  62. Friston, K. J., Stephan, K. E., Montague, R., & Dolan, R. J. (2014). Computational psychiatry: the brain as a phantastic organ. The Lancet Psychiatry, 1(2), 148-158. Doi: 10.1016/S2215-0366(14)70275-5.
  63. Fruhstorfer, H., Soveri, P., & Järvilehto, T. (1970). Short-term habituation of the auditory evoked response in man. Electroencephalography and Clinical Neurophysiology, 28(2), 153-161. Doi: 10.1016/0013-4694(70)90183-5.
  64. Gaab, N., Gaser, C., Zaehle, T., Jancke, L., & Schlaug, G. (2003). Functional anatomy of pitch memory – an fMRI study with sparse temporal sampling. NeuroImage, 19(4), 1417-1426. Doi: 10.1016/s1053-8119(03) 00224-6.
  65. García, J. J. M., Iodice, R., Carro, J., Sánchez, J. A., Palmero, F., & Mateos, A. M. (2012). Improvement of autobiographic memory recovery by means of sad music in Alzheimer’s disease type dementia. Aging Clinical and Experimental Research, 24(3), 227-232. Doi: 10.3275/7874.
  66. Gatti, D., & Vecchi, T. (2019). Memoria. Dal ricordo alla previsione. Roma: Carocci.
  67. Gebauer, L., Kringelbach, M. L., & Vuust, P. (2015). Predictive coding links perception, action, and learning to emotions in music. Comment on “The quartet theory of human emotions: An integrative and neurofunctional model”, by S. Koelsch et al., Physics of Life Reviews, 13, 50-52. Doi: 10.1016/j.plrev.2015.04.023.
  68. Giard, M. H., Perrin, F., Pernier, J., & Bouchet, P. (1990). Brain generators implicated in the processing of auditory stimulus deviance: A topographic event-related potential study. Psychophysiology, 27(6), 627-640. Doi: 10.1111/j.1469-8986.1990.tb03184.x.
  69. Graham, F. (1973). Habituation and dishabituation of responses innervated by the autonomic nervous system. In H. V. S. Peeke, M. J. Hertz (eds.), Habituation, Vol. 1 (pp. 175-206). Behavioral Studies. Orlando, FL: Academic Press.
  70. Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14-23. Doi: 10.1016/j.tics.2005.11.006.
  71. Gu, F., Wong, L., Chen, F., Huang, W. T., Wang, L., & Hu, A. X. (2018). Lateral inhibition is a neural mechanism underlying mismatch negativity. Neuroscience, 385, 38-46. Doi: 10.1016/j.neuroscience.2018.06.009.
  72. Hallam, S. (2018). The Psychology of Music. London: Routledge.
  73. Hansen, N. C., Dietz, M. J., & Vuust, P. (2017). Commentary: Predictions and the brain: How musical sounds become rewarding. Frontiers in Human Neuroscience, 11. Doi: 10.3389/fnhum.2017.00168.
  74. Hari, R., Hämäläinen, M., Ilmoniemi, R., Kaukoranta, E., Reinikainen, K., Salminen, J., ... & Sams, M. (1984). Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: neuromagnetic recordings in man. Neuroscience Letters, 50(1-3), 127-132. Doi: 10.1016/0304-3940(84)90474-9.
  75. Hari, R., Rif, J., Tiihonen, J., & Sams, M. (1992). Neuromagnetic mismatch fields to single and paired tones. Electroencephalography and Clinical Neurophysiology, 82(2), 152-154. Doi: 10.1016/0013-4694(92)90159-F.
  76. Haumann, N. T., Lumaca, M., Kliuchko, M., Santacruz, J. L., Vuust, P., & Brattico, E. (2021). Extracting human cortical responses to sound onsets and acoustic feature changes in real music, and their relation to event rate. Brain Research, 1754, 147248. Doi: 10.1016/j.brainres.2020.147248.
  77. Heilbron, M., & Chait, M. (2018). Great expectations: is there evidence for predictive coding in auditory cortex?. Neuroscience, 389, 54-73. Doi: 10.1016/j.neuroscience.2017.07.061.
  78. Herrmann, B., Henry, M. J., Fromboluti, E. K., McAuley, J. D., & Obleser, J. (2015). Statistical context shapes stimulus-specific adaptation in human auditory cortex. Journal of Neurophysiology, 113(7), 2582-2591. Doi: 10.1152/jn.00634.2014.
  79. Hohwy, J. (2012). Attention and conscious perception in the hypothesis testing brain. Frontiers in Psychology, 3. Doi: 10.3389/fpsyg.2012.00096.
  80. Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S., & Menon, R. S. (2013). Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Human Brain Mapping, 34(9), 2154-2177. Doi: 10.1002/hbm.22058.
  81. Irish, M., Cunningham, C. J., Walsh, J. B., Coakley, D., Lawlor, B. A., Robertson, I. H., & Coen, R. F. (2006). Investigating the enhancing effect of music on autobiographical memory in mild Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 22(1), 108-120. Doi: 10.1159/000093487.
  82. Johnson, J. K., Chang, C. C., Brambati, S. M., Migliaccio, R., Gorno-Tempini, M. L., Miller, B. L., & Janata, P. (2011). Music recognition in frontotemporal lobar degeneration and Alzheimer disease. Cognitive and Behavioral Neurology: Official Journal of the Society for Behavioral and Cognitive Neurology, 24(2), 74. Doi: 10.1097/WNN.0b013e31821de326.
  83. Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: individual differences in working memory. Psychological Review, 99(1), 122. Doi: 10.1037/0033-295X.99.1.122.
  84. Kanai, R., Komura, Y., Shipp, S., & Friston, K. (2015). Cerebral hierarchies: predictive processing, precision and the pulvinar. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1668), 20140169. Doi: 10.1098/rstb.2014.0169.
  85. King, J. B., Jones, K. G., Goldberg, E., Rollins, M., MacNamee, K., Moffit, C., ... & Foster, N. L. (2019). Increased functional connectivity after listening to favored music in adults with Alzheimer dementia. The Journal of Prevention of Alzheimer’s Disease, 6(1), 56-62. Doi: 10.14283/jpad.2018.19.
  86. Kliuchko, M., Brattico, E., Gold, B. P., Tervaniemi, M., Bogert, B., Toiviainen, P., & Vuust, P. (2019). Fractionating auditory priors: A neural dissociation between active and passive experience of musical sounds. PLoS One, 14(5), e0216499. Doi: 10.1371/journal.pone.0216499.
  87. Koelsch, S., Schröger, E., & Tervaniemi, M. (1999). Superior pre-attentive auditory processing in musicians. Neuroreport, 10(6), 1309-1313. Doi: 10.1097/00001756-199904260-00029.
  88. Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77. Doi: 10.1016/j.tics.2018.10.006.
  89. Kolata, G. (1984). Studying learning in the womb. Science, 225, 302-304. Doi: 10.1126/science.6740312.
  90. Kropotov, J. D., Nääänen, R., Sevostianov, A. V., Alho, K., Reinikainen, K., & Kropotova, O. V. (1995). Mismatch negativity to auditory stimulus change recorded directly from the human temporal cortex. Psychophysiology, 32(4), 418-422. Doi: 10.1111/j.1469-8986.1995.tb01226.x.
  91. Leopold, D. A., & Maier, A. (2012). Ongoing physiological processes in the cerebral cortex. NeuroImage, 62(4), 2190-2200. Doi: 10.1016/j.neuroimage.2011.10.059.
  92. Lerdahl, F., Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, MA: MIT Press.
  93. Limongi, R., Sutherland, S. C., Zhu, J., Young, M. E., & Habib, R. (2013). Temporal prediction errors modulate cingulate-insular coupling. NeuroImage, 71, 147-157. Doi: 10.1016/j.neuroimage.2012.12.078.
  94. Lordier, L., Loukas, S., Grouiller, F., Vollenweider, A., Vasung, L., Meskaldij, D. E., ... & Hüppi, P. S. (2019). Music processing in preterm and full-term newborns: a psychophysiological interaction (PPI) approach in neonatal fMRI. NeuroImage, 185, 857-864. Doi: 10.1016/j.neuroimage.2018.03.078.
  95. Loukas, S., Lordier, L., Meskaldji, D. E., Filippa, M., Sa de Almeida, J., Van De Ville, D., & Hüppi, P. S. (2022). Musical memories in newborns: A resting-state functional connectivity study. Human Brain Mapping. Doi: 10.1002/hbm.25677.
  96. Loveless, N. (1983). The orienting response and evoked potentials in man. Orienting and habituation: Perspectives in Human Research, 500, 71-108.
  97. Lumaca, M., Dietz, M. J., Hansen, N. C., Quiroga-Martinez, D. R., & Vuust, P. (2021). Perceptual learning of tone patterns changes the effective connectivity between Heschl’s gyrus and planum temporale. Human Brain Mapping, 42(4), 941-952. Doi: 10.1002/hbm.25269.
  98. Massaro, D. W. (1970). Perceptual processes and forgetting in memory tasks. Psychological Review, 77(6), 557. Doi: 10.1037/h0029984.
  99. Megela, A. L., & Teyler, T. J. (1979). Habituation and the human evoked potential. Journal of Comparative and Physiological Psychology, 93(6), 1154. Doi: 10.1037/h0077630.
  100. Milner, B. (1966). Amnesia following operation on the temporal lobes. In Amnesia (pp. 109-133). London: Butterworths.
  101. Näätänen, R., Gaillard, A. W., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42(4), 313-329. Doi: 10.1016/0001-6918(78)90006-9.
  102. Näätänen, R., & Michie, P. T. (1979). Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biological Psychology, 8(2), 81-136. Doi: 10.1016/0301-0511(79)90053-X.
  103. Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical Neurophysiology, 118(12), 2544-2590. Doi: 10.1016/j.clinph.2007.04.026.
  104. Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24(4), 375-425. Doi: 10.1111/j.1469-8986.1987.tb00311.x.
  105. Näätänen, R., Sams, M., Alho, K., Paavilainen, P., Reinikainen, K., & Sokolov, E. N. (1988). Frequency and location specificify of the human vertex N1 wave. Electroencephalography and Clinical Neurophysiology, 69(6), 523-531. Doi: 10.1016/0013-4694(88)90164-2.
  106. Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I. (2001). ‘Primitive intelligence’ in the auditory cortex. Trends in Neurosciences, 24(5), 283-288. Doi: 10.1016/s0166-2236(00)01790-2.
  107. Näätänen, R., & Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin, 125(6), 826. Doi: 10.1037/0033-2909.125.6.826.
  108. Öhman, A., Lader, M. (1977). Short-term changes of the human auditory evoked potentials during repetitive stimulation. In J. E. Desmedt (eds.). Auditory evoked potentials in man. Psychopharmacology correlates of EPs. Progress in clinical neurophysiology (Vol. 2, pp. 93-118). Basel: Karger.
  109. Omidvarnia, A., Pedersen, M., Walz, J. M., Vaughan, D. N., Abbott, D. F., & Jackson, G. D. (2016). Dynamic regional phase synchrony (DRePS) An Instantaneous Measure of Local fMRI Connectivity Within Spatially Clustered Brain Areas. Human Brain Mapping, 37(5), 1970-1985. Doi: 10.1002/hbm.23151.
  110. Pallesen K. J., Brattico E., Bailey C. J., Korvenoja A., Koivisto J., Gjedde A. et al. (2010) Cognitive Control in Auditory Working Memory Is Enhanced in Musicians. PLoS One 5(6): e11120. Doi: 10.1371/journal.pone.0011120.
  111. Parga, J. J., Daland, R., Kesavan, K., Macey, P. M., Zeltzer, L., & Harper, R. M. (2018). A description of externally recorded womb sounds in human subjects during gestation. PloS One, 13(5), e0197045. Doi: 10.1371/journal.pone.0197045.
  112. Pearce, M. T., Ruiz, M. H., Kapasi, S., Wiggins, G. A., & Bhattacharya, J. (2010). Unsupervised statistical learning underpins computational, behavioural, and neural manifestations of musical expectation. NeuroImage, 50(1), 302-313. Doi: 10.1016/j.neuroimage.2009.12.019.
  113. Peck, K. J., Girard, T. A., Russo, F. A., & Fiocco, A. J. (2016). Music and memory in Alzheimer’s disease and the potential underlying mechanisms. Journal of Alzheimer’s Disease, 51(4), 949-959. Doi: 10.3233/JAD-150998.
  114. Picton, T. W., Woods, D. L., Baribeau-Braun, J., & Healey, T. M. (1977). Evoked potential audiometry. J Otolaryngol, 6(2), 90-119.
  115. Preti, M. G., Bolton, T. A., & Van De Ville, D. (2017). The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage, 160, 41-54. Doi: 10.1016/j.neuroimage.2016.12.061.
  116. Quiroga-Martinez, D. R., Hansen, N. C., Højlund, A., Pearce, M. T., Brattico, E., & Vuust, P. (2019). Reduced prediction error responses in highas compared to low-uncertainty musical contexts. Cortex, 120, 181-200.
  117. Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79-87. Doi: 10.1038/4580.
  118. Reybrouck, M., Vuust, P., & Brattico, E. (2018). Music and brain plasticity: how sounds trigger neurogenerative adaptations. Neuroplasticity Insights of Neural Reorganization, 85. Doi: 10.5772/intechopen.74318.
  119. Rinne, T., Alho, K., Ilmoniemi, R. J., Virtanen, J., & Näätänen, R. (2000). Separate time behaviors of the temporal and frontal mismatch negativity sources. NeuroImage, 12(1), 14-19. Doi: 10.1006/nimg.2000.0591.
  120. Ross, S., & Hansen, N. C. (2016). Dissociating prediction failure: Considerations from music perception. Journal of Neuroscience, 36(11), 3103e3105. Doi: 10.1523/JNEUROSCI.0053-16.
  121. Sakoğlu, Ü., Pearlson, G. D., Kiehl, K. A., Wang, Y. M., Michael, A. M., & Calhoun, V. D. (2010). A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5-6), 351-366. Doi: 10.1007/s10334-010-0197-8.
  122. Salmi, J., Pallesen, K. J., Neuvonen, T., Brattico, E., Korvenoja, A., Salonen, O., & Carlson, S. (2010). Cognitive and motor loops of the human cerebro-cerebellar system. Journal of Cognitive Neuroscience, 22(11), 2663-2676. Doi: 10.1162/jocn.2009.21382.
  123. Sams, M., Hämäläinen, M., Antervo, A., Kaukoranta, E., Reinikainen, K., & Hari, R. (1985). Cerebral neuromagnetic responses evoked by short auditory stimuli. Electroencephalography and Clinical Neurophysiology, 61(4), 254-266. Doi: 10.1016/0013-4694(85)91092-2.
  124. Schulze, K., Zysset, S., Mueller, K., Friederici, A. D., & Koelsch, S. (2011). Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians. Human Brain Mapping, 32(5), 771-783. Doi: 10.1002/hbm.21060.
  125. Seashore, C. E. (1937). The psychology of music. Music Educators Journal, 23(4), 30-33. Doi: 10.2307/3384578.
  126. Serkov, F. N., Leonova, E. F., & Shelest, I. I. (1969). Evoked potentials of the auditory cortex on paired stimuli. Neurophysiology, 1(1), 42-49.
  127. Simon, J., Balla, V., & Winkler, I. (2019). Temporal boundary of auditory event formation: An electrophysiological marker. International Journal of Psychophysiology, 140, 53-61. Doi: 10.1016/j.ijpsycho.2019.04.006.
  128. Sloboda, J. A. (1985). Immediate recall of melodies. Musical Structure and Cognition, 143-167.
  129. Snyder, B. (2009). Memory for music. The Oxford Handbook of Music Psychology, 107-117. Doi: 10.1093/oxfordhb/9780199298457.013.0010.
  130. Sperling, G. (1963). A model for visual memory tasks. Human Factors, 5(1), 19-31. Doi: 10.1177%2F001872086300500103.
  131. Sporns, O. (2012). Discovering the human connectome. Cambridge, MA: MIT press.
  132. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276-315. Doi: 10.1016/0001-6918(69)90055-9.
  133. Tan, X. D., Yu, X. F., Lin, L., & Wang, T. (2015). Simulation on the comparison of steady-state responses synthesized by transient templates based on superposition hypothesis. Computational and Mathematical Methods in Medicine, 2015. Doi: 10.1155/2015/476050.
  134. Tervaniemi, M., Alho, K., Paavilainen, P., Sams, M., & Näätänen, R. (1993). Absolute pitch and event-related brain potentials. Music Perception, 10(3), 305-316. Doi: 10.2307/40285572.
  135. Tervaniemi, M., & Hugdahl, K. (2003). Lateralization of auditory-cortex functions. Brain Research Reviews, 43(3), 231-246. Doi: 10.1016/j.brainresrev.2003.08.004.
  136. Tervaniemi, M., Huotilainen, M., & Brattico, E. (2014). Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding. Frontiers in Human Neuroscience, 8, 496. Doi: 10.3389/fnhum.2014.00496.
  137. Tervaniemi, M., Ilvonen, T., Karma, K., Alho, K., & Näätänen, R. (1997). The musical brain: brain waves reveal the neurophysiological basis of musicality in human subjects. Neuroscience Letters, 226(1), 1-4. Doi: 10.1016/s0304-3940(97)00217-6.
  138. Tesche, C. D., & Karhu, J. (2000). Theta oscillations index human hippocampal activation during a working memory task. Proceedings of the National Academy of Sciences, 97(2), 919-924. Doi: 10.1073/pnas.97.2.919.
  139. Thompson, R. F., Groves, P. M., Teyler, T. J., & Roemer, R. A. (1973). A dual-process theory of habituation: Theory and behavior. In Habituation: Behavioral Studies and Physiological Substrates (Vol. 1, pp. 239-271). Academic Press, New York.
  140. Thompson, R. F., & Spencer, W. A. (1966). Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73(1), 16. Doi: 10.1037/h0022681.
  141. Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study. Journal of Neuroscience, 31(25), 9118-9123. Doi: 10.1523/jneurosci.1425-11.2011.
  142. Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16(1), 55-61. Doi: 10.1038/nrn3857.
  143. Van Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519-534. Doi: 10.1016/j.euroneuro.2010.03.008.
  144. Vanstone, A. D., & Cuddy, L. L. (2009). Musical memory in Alzheimer disease. Aging, Neuropsychology, and Cognition, 17(1), 108-128. Doi: 10.1080/13825580903042676.
  145. Vuust, P., Brattico, E., Glerean, E., Seppänen, M., Pakarinen, S., Tervaniemi, M., & Näätänen, R. (2011). New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability. Cortex, 47(9), 1091-1098. Doi: 10.1016/j.cortex.2011.04.026.
  146. Vuust, P., Brattico, E., Seppänen, M., Näätänen, R., & Tervaniemi, M. (2012). The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50(7), 1432-1443. Doi: 10.1016/j.neuropsychologia.2012.02.028.
  147. Vuust, P., Heggli, O. A., Friston, K. J., & Kringelbach, M. L. (2022). Music in the brain. Nature Reviews Neuroscience, 1-19. Doi: 10.1038/s41583-022-00578-5.
  148. Vuust, P., Ostergaard, L., Pallesen, K. J., Bailey, C., & Roepstorff, A. (2009). Predictive coding of music–brain responses to rhythmic incongruity. Cortex, 45(1), 80-92. Doi: 10.1016/j.cortex.2008.05.014.
  149. Vuust, P., Witek, M., Dietz, M., & Kringelbach, M. L. (2018). Now you hear it: A novel predictive coding model for understanding rhythmic incongruity. Annals of the New York Academy of Sciences, 1e11. Doi: 10.1111/nyas.13622.
  150. Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13(12), 532-540. Doi: 10.1016/j.tics.2009.09.003.
  151. Woods, D. L., & Elmasian, R. (1986). The habituation of event-related potentials to speech sounds and tones. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 65(6), 447-459. Doi: 10.1016/0168-5597(86)90024-9.
  152. Zacharias, N., König, R., & Heil, P. (2012). Stimulation‐history effects on the M 100 revealed by its differential dependence on the stimulus onset interval. Psychophysiology, 49(7), 909-919. Doi: 10.1111/j.1469-8986.2012.01370.x.
  153. Zatorre, R. J. (2003). Absolute pitch: a model for understanding the influence of genes and development on neural and cognitive function. Nature Neuroscience, 6(7), 692-695. Doi: 10.1038/nn1085.
  154. Zhao, L., Zeng, W., Shi, Y., Nie, W., & Yang, J. (2020). Dynamic visual cortical connectivity analysis based on functional magnetic resonance imaging. Brain and Behavior, 10(7), e01698. Doi: 10.1002/brb3.1698.


Metrics Loading ...