Skip to main navigation menu Skip to main content Skip to site footer

Articoli

Latest Articles

The development of numerical and arithmetical skills in children: The processing of symbolic and non-symbolic quantities

DOI
https://doi.org/10.3280/rip2024oa19335
Submitted
febbraio 4, 2025
Published
2025-02-07

Abstract

The acquisition of numerical and mathematical skills is one of the primary objectives of formal education. This contribution is a critical review of the studies that have examined the development of the processing of symbolic and non-symbolic quantities in primary school children, and the impact that these skills have on the development of arithmetic skills. Furthermore, the evidence on developmental dyscalculia and the effectiveness of training for the development of numerical representation is examined. Understanding the development of symbolic and non-symbolic numerical magnitude is fundamental to plan more effective didactic interventions for the acquisition of numerical and arithmetic skills.

References

  1. Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariance in neonates. Child development, 695-701. DOI: 10.2307/1130057.
  2. Ansari, D., & Dhital, B. (2006). Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: an event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 18(11), 1820-1828. DOI: 10.1162/jocn.2006.18.11.1820.
  3. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature reviews neuroscience, 9(4), 278-291. DOI: 10.1038/nrn2334.
  4. Ashcraft, M. H., & Moore, A. M. (2012). Cognitive processes of numerical estimation in children. Journal of experimental child psychology, 111(2), 246-267. DOI: 10.1016/j.jecp.2011.08.005.
  5. Bailey, D. H., Littlefield, A., & Geary, D. C. (2012). The codevelopment of skill at and preference for use of retrieval-based processes for solving addition problems: Individual and sex differences from first to sixth grades. Journal of Experimental Child Psychology, 113(1), 78-92. DOI: 10.1016/j.jecp.2012.04.014.
  6. Bailey, D. H., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school fraction knowledge. Developmental science, 17(5), 775-785. DOI: 10.1111/desc.12155.
  7. Banks, W. P., Fujii, M., & Kayra-Stuart, F. (1976). Semantic congruity effects in comparative judgments of magnitudes of digits. Journal of Experimental Psychology: Human Perception and Performance, 2(3), 435. DOI: 10.1037/0096-1523.2.3.435.
  8. Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). What basic number pro-cessing measures in kindergarten explain unique variability in first-grade arithmetic proficiency?. Journal of experimental child psychology, 117, 12-28. DOI: 10.1016/j.jecp.2013.08.010.
  9. Basten, M., Jaekel, J., Johnson, S., Gilmore, C., & Wolke, D. (2015). Preterm birth and adult wealth: mathematics skills count. Psychological science, 26(10), 1608-1619. DOI: 10.1177/0956797615596230.
  10. Berch, D. B. (2005). Making sense of number sense: Implications for children with mathematical disabilities. Journal of learning disabilities, 38(4), 333-339. DOI: 10.1177/00222194050380040901.
  11. Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 41, 545-551. DOI: 10.1037/a0017887.
  12. Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of experimental child psychology, 114(3), 375-388. DOI: 10.1016/j.jecp.2012.09.015.
  13. Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental psychology, 42(1), 189. DOI: 10.1037/0012-1649.41.6.189.
  14. Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child development, 79(4), 1016-1031. DOI: 10.1111/j.1467-8624.2008.01173.x.
  15. Bortolato, C. (2023). La via del metodo analogico. Teoria per l’apprendimento intuitivo della matematica, Metodo Analogico. Trento: Edizioni Centro Studi Erickson S.p.A.
  16. Bortolato, C. (2011). La linea del 20. Metodo analogico per l’apprendimento del calcolo, Metodo Analogico Bortolato. Trento: Edizioni Centro Studi Erickson S.p.A.
  17. Brankaer, C., Ghesquiere, P., & Smedt, B.D. (2014). Children’s mapping between non-symbolic and symbolic numerical magnitudes and its association with timed and untimed tests of mathematics achievement. PLOS ONE, 9 (4). DOI: 10.1371/journal.pone.0093565.
  18. Bugden, S., Price, G. R., McLean, D. A., & Ansari, D. (2012). The role of the left intraparietal sulcus in the relationship between symbolic number processing and children's arithmetic competence. Developmental cognitive neuroscience, 2(4), 448-457. DOI: 10.1016/j.dcn.2012.04.001.
  19. Bugden, S., DeWind, N. K., & Brannon, E. M. (2016). Using cognitive training studies to unravel the mechanisms by which the approximate number system supports symbolic math ability. Current Opinion in Behavioral Sciences, 10, 73-80. DOI: 10.1016/j.cobeha.2016.05.002.
  20. Bugden, S., Park, A., Mackey, A., & Brannon, E. (2021). The neural basis of number word processing in children and adults. Developmental Cognitive Neuroscience, 51, 101011. DOI: 10.1016/j.dcn.2021.101011
  21. Butterworth, B. (1999). A head for figures. Science, 284(5416), 928-929. DOI: 10.1126/science.284.5416.928.
  22. Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. R. (2001). Storage and retrieval of addition facts: The role of number comparison. The Quarterly Journal of Experimental Psychology: Section A, 54(4), 1005-1029. DOI: 10.1080/713756007.
  23. Butterworth, B. (2005). Developmental dyscalculia. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 455-467). Psychology Press.
  24. Butterworth, B. (2005). The development of arithmetical abilities. Journal of child psychology and psychiatry, 46(1), 3-18. DOI: 10.1111/j.1469-7610.2004.00374.x.
  25. Butterworth, B., & Reigosa, V. (2007). Information processing deficits in dyscalculia. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 65-81). Baltimore, Maryland: Paul H. Brookes Publishing Co.
  26. Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534-541. DOI: 10.1016/b978-0-12-385948-8.00016-5.
  27. Butterworth, B., Varma, S., Laurillard, D. (2011). Dyscalculia: From Brain to Education, Science, 332(6033), 1049-53. DOI: 10.1126/science.1201536.
  28. Bynner, J., & Parsons, S. (1997). Does Numeracy Matter? Evidence from the National Child Development Study on the Impact of Poor Numeracy on Adult Life. London, England: Basic Skills Agency.
  29. Cantlon, J., Brannon, E., Carter, E., & Pelphrey, K. (2006). Functional imaging of numerical processing in adults and 4-y-old children. Plos Biology, 4(5), e125. DOI: 10.1371/journal.pbio.0040125.
  30. Castro, D., Estévez, N. & Pérez, O. (2009). Typical development of quantity comparison in school-aged children. The Spanish Journal of Psychology, 14, 50-61. DOI: 10.5209/rev_SJOP.2011.v14.n1.4.
  31. Castro, D., Reigosa-Crespo, V., & González, E. (2012). Non-symbolic and symbolic numerical magnitude processing in children with developmental dyscalculia. The Spanish Journal of Psychology, 15, 952-966. DOI: 10.5209/rev_SJOP.2012.v15.n3.39387.
  32. Chen, Q., & Li, J. (2014). Association between individual differences in nonsymbolic number acuity and math performance: a meta-analysis. Acta Psychology, 148, 163-72. DOI: 10.1016/j.actpsy.2014.01.016.
  33. Cowan, R., & Powell, D. (2014). The contributions of domain-general and numerical factors to third-grade arithmetic skills and mathematical learning disability. Journal of educational psychology, 106(1), 214. DOI: 10.1037/a0034097.
  34. Decarli, G., Paris, E., Tencati, C., Nardelli, C., Vescovi, M., Surian, L., & Piazza, M. (2020). Impaired large numerosity estimation and intact subitizing in developmental dyscalculia. PLoS One, 15(12). DOI: 10.1371/journal.pone.0244578.
  35. De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired ac-cess? Numerical magnitude processing in first graders with mathematical difficulties. Journal of experimental child psychology, 108(2), 278-292. DOI: 10.1016/j.jecp.2010.09.003.
  36. De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48-55. DOI: 10.1016/j.tine.2013.06.001.
  37. Dehaene, S. (1997). The number sense. New York: Oxford University Press.
  38. Dehaene, S. (2001). Précis of the number sense. Mind & language, 16(1), 16-36. DOI: 10.1111/1468-0017.00154.
  39. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506. DOI: 10.1080/02643290244000239.
  40. Dehaene, S. (2008). Symbols and quantities in parietal cortex: elements of a mathematical theory of number representation and manipulation. In P. Haggard, Y. Rossetti, & Y.M. Kawato (Eds.), Attention and Performance Series XXII (pp. 527-574). New York: Oxford University Press.
  41. Dehaene, S. (2011). The number sense: How the mind creates mathematics (2nd ed.). OUP USA.
  42. Desoete, A., Roeyers, H., & De Clercq, A. (2004). Children with mathematics learning disabilities in Belgium. Journal of learning disabilities, 37(1), 50-61. DOI: 10.1177/00222194040370010601.
  43. Desoete, A., Stock, P., Schepens, A., Baeyens, D., & Roeyers, H. (2009). Classification, seriation, and counting in grades 1, 2, and 3 as two-year longitudinal predictors for low achieving in numerical facility and arithmetical achievement?. Journal of Psychoeducational Assessment, 27(3), 252-264. DOI: 10.1177/0734282908330588.
  44. DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: effects of feedback and training. Frontiers in human neuroscience, 6, 68. DOI: 10.3389/fnhum.2012.00068.
  45. Diester, I., & Nieder, A. (2007). Semantic associations between signs and numerical categories in the prefrontal cortex. PLoS biology, 5(11), e294. DOI: 10.1371/journal.pbio.0050294.
  46. Diester, I., & Nieder, A. (2010). Numerical values leave a semantic imprint on associated signs in monkeys. Journal of Cognitive Neuroscience, 22(1), 174-183. DOI: 10.1162/jocn.2009.21193.
  47. Dowker, A. (2005). Early identification and intervention for students with mathematics difficulties. Journal of learning disabilities, 38(4), 324-332. DOI: 10.1177/00222194050380040801.
  48. Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., Pagani, L. S., Feinstein, L., Engel, M., Brooks-Gunn, J., Sexton, H., Duckworth, K., & Japel, C. (2007). School readiness and later achievement. Developmental psychology, 43(6), 1428-1446. DOI: 10.1037/0012-1649.43.6.1428.
  49. Dyson, N. I., Jordan, N. C., & Glutting, J. (2013). A number sense intervention for low-income kindergartners at risk for mathematics difficulties. Journal of learning disabilities, 46(2), 166-181. DOI: 10.1177/0022219411410233.
  50. Eger, E., Michel, V., Thirion, B., Amadon, A., Dehaene, S., & Kleinschmidt, A. (2009). Deciphering cortical number coding from human brain activity patterns. Current Biology, 19(19), 1608-1615. DOI: 10.1016/j.cub.2009.08.047.
  51. Emerson, R., & Cantlon, J. (2014). Continuity and change in children’s longitudinal neural responses to numbers. Developmental Science, 18(2), 314-326. DOI: 10.1111/desc.12215.
  52. Fayol, M., Camos, V., & Roussel, J. L. (2000). Acquisition et mise en oeuvre de la numération par les enfants de 2 à 9 ans. Neuropsychologie des troubles du calcul et du traitement des nombres, 33-58.
  53. Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of experimental child psychology, 123, 53-72. DOI: 10.1016/j.jecp.2014.01.013.
  54. Feigenson, L., & Halberda, J. (2004). Infants chunk object arrays into sets of individuals. Cognition, 91(2), 173-190. DOI: 10.1016/j.cognition.2003.09.003.
  55. Feigenson L, Dehaene S, & Spelke E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(30), 7-14. DOI: 10.1016/j.tics.2004.05.002.
  56. Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links between the intuitive sense of number and formal mathematics ability. Child development perspectives, 7(2), 74-79. DOI: 10.1111/cdep.12019.
  57. Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. A. (2003). Parietal representation of symbolic and non symbolic magnitude. Journal of cognitive neuroscience, 15(1), 47-56. DOI: 10.1162/089892903321107819.
  58. Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., & Bryant, J. D. (2010). The contributions of numerosity and domain-general abilities to school readiness. Child Development, 81(5), 1520-1533. DOI: 10.1111/j.1467-8624.2010.01489.x.
  59. Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in pre-schoolers from low‐income homes: Contributions of inhibitory control. Developmental science, 16(1), 136-148. DOI: 10.1111/desc.12013.
  60. Geary, D. C., Bow-Thomas, C. C., & Yao, Y. H. (1992). Counting knowledge and skill in cognitive addition: A comparison of normal and mathematically disabled children. Journal of Experimental Child Psychology, 54, 372-391. DOI: 10.1016/0022-0965(92)90026-3.
  61. Geary, D. C. (1993). Mathematical disabilities: cognitive, neuropsychological, and genetic components. Psychological bulletin, 114(2), 345. DOI: 10.1037/0033-2909.114.2.345.
  62. Geary, D.C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4-15. DOI: 10.1177/00222194040370010201.
  63. Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of experimental child psychology, 88(2), 121-151. DOI: 10.1016/j.jecp.2004.03.002.
  64. Geary, D. C., & Hoard, M. K. (2005). Learning disabilities in arithmetic and mathematics: Theoretical and empirical perspectives. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 253-267). Psychology Press.
  65. Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child development, 78(4), 1343-1359. DOI: 10.1111/j.1467-8624.2007.01069.x.
  66. Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line representations in children with mathematical learning disability. Developmental neuropsychology, 33(3), 277-299. DOI: 10.1080/87565640801982361
  67. Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642-648. DOI: 10.1037/a0026218.
  68. Gerber, P.J. (2012). The impact of learning disabilities on adulthood: A review of the evidenced-based literature for research and practice in adult education. Journal of Learning Disabilities, 45(1), 31-46. DOI: 10.1177/0022219411426858.
  69. Gersten, R., Jordan, N. C., & Flojo, J. R. (2005). Early identification and interventions for students with mathematics difficulties. Journal of learning disabilities, 38(4), 293-304. DOI: 10.1016/j.cognition.2010.02.002.
  70. Gilmore, C.K., McCarthy, S.E., & Spelke, E.S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394-406. DOI: 10.1016/j.cognition.2010.02.002.
  71. Gilmore, C., Attridge, N., De Smedt, B., & Inglis, M. (2014). Measuring the approximate number system in children: Exploring the relationships among different tasks. Learning and Individual Differences, 29, 50-58. DOI: 10.1016/j.lin-dif.2013.10.004.
  72. Girelli, L. & Melogno, S. (2020). Sviluppo e apprendimento delle abilità numeriche: dai meccanismi di quantificazione preverbali alla soluzione dei problemi aritmetici. In P. Zoccolotti (a cura di), I disturbi specifici di apprendimento. Manuale per la valutazione (pp. 313-338). Roma: Carocci editore.
  73. Gray, S. A., & Reeve, R. A. (2014). Preschoolers’ dot enumeration abilities are markers of their arithmetic competence. PLoS One, 9(4), e94428. DOI: 10.1371/journal.pone.0094428.
  74. Griffin, S. (2004). Building number sense with Number Worlds: A mathematics program for young children. Early childhood research quarterly, 19(1), 173-180. DOI: 10.1016/j.ecresq.2004.01.012.
  75. Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: the role of the linear number line. Developmental psychology, 48(5), 1229. DOI: 10.1037/a0027433.
  76. Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668. DOI: 10.1038/nature07246.
  77. Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the number sense: the approximate number system 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44, 1457-1465. DOI: 10.1037/a0012682.
  78. Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of experimental child psychology, 103(1), 17-29. DOI: 10.1016/j.jecp.2008.04.001.
  79. Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116-11120. DOI: 10.1073/pnas.1200196109.
  80. Honoré, N., & Noël, M. P. (2016). Improving preschoolers’ arithmetic through number magnitude training: The impact of non-symbolic and symbolic training. PloS one, 11(11), e0166685. DOI: 10.1371/journal.pone.0166685.
  81. Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92-107. DOI: 10.1016/j.cognition.2013.12.007.
  82. Iuculano, T., Tang, J., Hall, C. W., & Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental science, 11(5), 669-680. DOI: 10.1111/j.1467-7687.2008.00716.x.
  83. Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology, 85, 103-119. DOI: 10.1016/s0022-0965(03)00032-8.
  84. Jordan, J. A., Mulhern, G., & Wylie, J. (2009). Individual differences in trajectories of arithmetical development in typically achieving 5- to 7-year-olds. Journal of Experimental Child Psychology, 103, 469-479. DOI: 10.1016/j.jecp.2009.01.011.
  85. Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental neuropsychology, 36(6), 763-787. DOI: 10.1080/87565641.2010.549884.
  86. Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and instruction, 25, 95-103. DOI: 10.1016/j.learninstruc.2012.12.001.
  87. Koontz, K. L., & Berch, D. B. (1996). Identifying simple numerical stimuli: processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2(1), 1-23. DOI: 10.1080/135467996387525.
  88. Kucian, K., Loenneker, T., Martin, E., & von Aster, M. (2011). Non-symbolic numerical distance effect in children with and without developmental dyscalculia: a parametric fMRI study. Developmental neuropsychology, 36(6), 741-762. DOI: 10.1080/87565641.2010.549867.
  89. Kuzmina, Y., Tikhomirova, T., Lysenkova, I., & Malykh, S. (2020). Domain-general cognitive functions fully explained growth in nonsymbolic magnitude representation but not in symbolic representation in elementary school children. PloS one, 15(2). DOI: 10.1371/journal.pone.0228960.
  90. Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8-9-year-old students. Cognition, 93(2), 99-125. DOI: 10.1016/j.cognition.2003.11.004.
  91. Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of experimental child psychology, 103(4), 546-565. DOI: 10.1016/j.jecp.2008.12.006.
  92. Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103, 309-24. DOI: 10.1016/j.jecp.2009.03.006.
  93. Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child development, 78(6), 1723-1743. DOI: 10.1111/j.1467-8624.2007.01087.x.
  94. Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164. DOI: 10.1017/s0140525x16000960.
  95. LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner‐Wilger Marcie. (2010). Pathways to mathematics: longitudinal predictors of performance. Child Development, 81, 1753-1767. DOI: 10.1111/j.1467-8624.2010.01508.x.
  96. Liang, Y., Zhang, L., Duan, X., Wu, G., & Yan, H. (2023). Longitudinal association between non-symbolic numerical representation and emerging math competence: The dynamic mediation effect from cardinal knowledge to ordinal skills. Cognitive Development, 66, 101339. DOI: 10.1016/j.cogdev.2023.101339.
  97. Libertus, M. E., & Brannon, E. M. (2009). Behavioral and neural basis of number sense in infancy. Current Directions in Psychological Science, 18(6), 346-351. DOI: 10.1111/j.1467-8721.2009.01665.x.
  98. Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental science, 14(6), 1292-1300. DOI: 10.1111/j.1467-7687.2011.01080.x.
  99. Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities. Journal of Experimental Child Psychology, 116, 829-838. DOI: 10.1016/j.jecp.2013.08.003.
  100. Lourenco, S. F., & Bonny, J. W. (2017). Representations of numerical and non-nu-merical magnitude both contribute to mathematical competence in children. Developmental Science, 20(4), e12418. DOI: 10.1111/desc.12418.
  101. Lv, J., Mao, H., Zeng, L., Wang, X., Zhou, X., & Mou, Y. (2023). The developmental relationship between nonsymbolic and symbolic fraction abilities. Journal of experimental child psychology, 232, 105666. DOI: 10.1016/j.jecp.2023.105666.
  102. Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the rela-tion between number-sense and arithmetic competence. Cognition, 121(2), 256-261. DOI: 10.1016/j.cognition.2011.07.009.
  103. Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental science, 17(5), 714-726. DOI: 10.1111/desc.12152.
  104. Lyons, I. M., & Ansari, D. (2015). Foundations of children’s numerical and mathematical skills: The roles of symbolic and nonsymbolic representations of numerical magnitude. Advances in child development and behavior, 48, 93-116. DOI: 10.1016/bs.acdb.2014.11.003.
  105. Lyons, I. M., Nuerk, H. C., & Ansari, D. (2015). Rethinking the implications of numerical ratio effects for understanding the development of representational precision and numerical processing across formats. Journal of Experimental Psy-chology: General, 144(5), 1021. DOI: 10.1037/xge0000094.
  106. Mandler, G., & Shebo, B. J. (1982). Subitizing: an analysis of its component processes. Journal of experimental psychology: general, 111(1), 1. DOI: 10.1037/0096-3445.111.1.1.
  107. Marinelli, C. V., Martelli, M., & Zoccolotti, P. (2024). Does the procedural deficit hypothesis of dyslexia account for the lack of automatization and the comorbidity among developmental disorders? Cognitive Neuropsychology, 41(3-4), 93-112. DOI: 10.1080/02643294.2024.2393447.
  108. Marinelli, C. V., Angelelli, P., Martelli, M., Trenta, M., & Zoccolotti, P. (2021). Ability to Consolidate Instances as a Proxy for the Association Among Reading, Spelling, and Math Learning Skill. Frontiers in Psychology, 12, 761696. DOI: 10.3389/fpsyg.2021.761696.
  109. Matejko, A. A., & Ansari, D. (2016). Trajectories of symbolic and nonsymbolic magnitude processing in the first year of formal schooling. PloS one, 11(3), e0149863. DOI: 10.1371/journal.pone.0149863.
  110. Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011a). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One, 6(9). DOI: 10.1371/journal.pone.0023749.
  111. Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011b). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82, 1224-1237. DOI: 10.1111/j.1467-8624.2011.01608.x.
  112. Mejias, S., Mussolin, C., Rousselle, L., Grégoire, J., & Noël, M. P. (2012). Numerical and nonnumerical estimation in children with and without mathematical learning disabilities. Child Neuropsychology, 18(6), 550-575. DOI: 10.1080/09297049.2011.625355.
  113. Merkley, R., & Ansari, D. (2016). Why numerical symbols count in the development of mathematical skills: Evidence from brain and behavior. Current Opinion in Behavioral Sciences, 10, 14-20. DOI: 10.1016/j.cobeha.2016.04.006.
  114. Mou, Y., Li, Y., Hoard, M. K., Nugent, L. D., Chu, F. W., Rouder, J. N., & Geary, D. (2016). Developmental foundations of children’s fraction magnitude knowledge. Cognitive Development, 39, 141-153. DOI: 10.1016/j.cog-dev.2016.05.002.
  115. Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of experimental child psychology, 103(4), 490-502. DOI: 10.1016/j.jecp.2009.02.003.
  116. Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1), 10-25. DOI: 10.1016/j.cognition.2009.10.006.
  117. Mussolin, C., De Volder, A., Grandin, C., Schlogel, X., Nassogne, M., & Noël, M. (2010). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22(5), 860-874. DOI: 10.1162/jocn.2009.21237.
  118. Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual review of neuroscience, 32, 185-208. DOI: 10.1146/annurev.neuro.051508.135550.
  119. Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PloS one, 8(7), e67918. DOI: 10.1371/journal.pone.0067918.
  120. Nunez, R. E. (2017). Is there really an evolved capacity for number?. Trends in Cognitive Sciences, 21(6), 409-424. DOI: 10.1016/j.tics.2017.03.005.
  121. Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students’ basic number processing and arithmetic skills. Learning and Instruction, 23, 125-135. DOI: 10.1016/j.learninstruc.2012.08.004.
  122. Osmond, J. (1993). The Reality of Dyslexia. London: Cassell. Park, J., & Brannon, E. M. (2013). Training the approximate number system im-proves math proficiency. Psychological science, 24(10), 2013-2019. DOI: 10.1177/0956797613482944.
  123. Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1), 188-200. DOI: 10.1016/j.cognition.2014.06.011.
  124. Parsons, S., & Bynner, J. (2005). Measuring basic skills for longitudinal study: the design and development of instruments for use with cohort members in the age 34 follow-up in the 1970 British cohort study (BCS70). Literacy and Numeracy Studies, 14(2), 7-30.
  125. Piazza, M., Pinel, P., Le Bihan, D., Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron 53(2), 293-305. DOI: 10.1016/j.neuron.2006.11.022.
  126. Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14, 542-551. DOI: 10.1016/b978-0-12-385948-8.00017-7.
  127. Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17(24), 1042-1043. DOI: 10.1016/j.cub.2007.10.013.
  128. Price, G. R., & Fuchs, L. S. (2016). The mediating relation between symbolic and nonsymbolic foundations of math competence. PLoS One, 11(2), e0148981. DOI: 10.1371/journal.pone.0148981.
  129. Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low‐income children’s numerical knowledge through playing number board games. Child development, 79(2), 375-394. DOI: 10.1111/j.1467-8624.2007.01131.x.
  130. Ramani, G. B., & Siegler, R. S. (2011). Reducing the gap in numerical knowledge between low- and middle-income preschoolers. Journal of Applied Developmental Psychology, 32, 146-159. DOI: 10.1016/j.appdev.2011.02.005.
  131. Ramani, G. B., Siegler, R. S., & Hitti, A. (2012). Taking it to the classroom: Number board games as a small group learning activity. Journal of educational psychology, 104(3), 661. DOI: 10.1037/a0028995.
  132. Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive development, 24(4), 450-472. DOI: 10.1016/j.cogdev.2009.09.003.
  133. Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in markers of core numerical competencies. Journal of Experimental Psychology: General, 141(4), 649. DOI: 10.1037/a0027520.
  134. Reeve RA, Paul JM, Butterworth B. 2015. Longitudinal changes in young children’s 0-100 to 0-1000 numberline error signatures. Frontiers in Psychology, 6(647). DOI: 10.3389/fpsyg.2015.00647.
  135. Reigosa-Crespo, V., González-Alemañy, E., León, T., Torres, R., Mosquera, R., & Valdés-Sosa, M. (2013). Numerical capacities as domain-specific predictors beyond early mathematics learning: A longitudinal study. PloS One, 8(11), e79711. DOI: 10.1371/journal.pone.0079711.
  136. Rickard, T., Romero, S., Basso, G., Wharton, C., Flitman, S., & Grafman, J. (2000). The calculating brain: an fmri study. Neuropsychologia, 38(3), 325-335. DOI: 10.1016/s0028-3932(99)00068-8.
  137. Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological science, 24(7), 1301-1308. DOI: 10.1177/0956797612466268.
  138. Robinson, C. S., Menchetti, B. M., & Torgesen, J. K. (2002). Toward a two‐factor theory of one type of mathematics disabilities. Learning Disabilities Research & Practice, 17(2), 81-89. DOI: 10.1111/1540-5826.00035.
  139. Romano, C., Bruno, F., Milano, S., Nardacchione, G., & Marinelli, C.V. (in press). Il metodo analogico di Bortolato per gli studenti con disturbi specifico di appren-dimento (pp. 173-187). In G.A. Toto (a cura di). Un bootcamp per le competenze in Università. Trento: Edizioni Centro Studi Erickson S.p.A.
  140. Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2001). Attention and recognition memory in the 1st year of life: a longitudinal study of preterm and full-term infants. Developmental psychology, 37(1), 135. DOI: 10.1037/0012-1649.37.1.135.
  141. Ross-sheehy, S., Oakes, L. M., & Luck, S. J. (2003). The development of visual short-term memory capacity in infants. Child development, 74(6), 1807-1822. DOI: 10.1046/j.1467-8624.2003.00639.x.
  142. Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361-395. DOI: 10.1016/j.cognition.2006.01.005.
  143. Rubinsten, O., & Tannock, R. (2010). Mathematics anxiety in children with developmental dyscalculia. Behavioral and Brain functions, 6, 1-13. DOI: 10.1186/1744-9081-6-46.
  144. Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30(2), 344-357. DOI: 10.1046/j.1467-8624.2003.00639.x.
  145. Sasanguie, D., Van den Bussche, E., & Reynvoet, B. (2012). Predictors for mathematics achievement? Evidence from a longitudinal study. Mind, Brain, and Education, 6(3), 119-128. DOI: 10.1111/j.1751-228x.2012.01147.x.
  146. Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. Quarterly journal of experimental psychology, 67(2), 271-280. DOI: 10.1080/17470218.2013.803581.
  147. Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14(2), 280-291. DOI: 10.1111/j.1467-7687.2010.00976.x.
  148. Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3). DOI: 10.1111/desc.12372.
  149. Shrager, J., & Siegler, R. S. (1998). SCADS: A model of children’s strategy choices and strategy discoveries. Psychological science, 9(5), 405-410. DOI: 10.1111/1467-9280.00076.
  150. Siegler, R. S. (1996). Emerging minds: The process of change in children’s thinking. New York: Oxford University Press.
  151. Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological science, 14(3), 237-250. DOI: 10.1111/1467-9280.02438.
  152. Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child development, 75(2), 428-444. DOI: 10.1111/j.1467-8624.2004.00684.x.
  153. Siegler, R. S., & Ramani, G. B. (2008). Playing linear numerical board games promotes low‐income children’s numerical development. Developmental science, 11(5), 655-661. DOI: 10.1111/j.1467-7687.2008.00714.x.
  154. Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games – but not circular ones – improves low-income preschoolers’ numerical understanding. Journal of educational psychology, 101(3), 545. DOI: 10.1037/a0014239.
  155. Siegler, R. S., & Lortie-Forgues, H. (2014). An integrative theory of numerical development. Child Development Perspectives, 8(3), 144-150. DOI: 10.1111/cdep.12077.
  156. Sekuler, R., & Mierkiewicz, D. (1977). Children’s judgments of numerical inequality. Child Development, 48(2), 630-633. DOI: 10.2307/1128664.
  157. Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences, 110(45), 18116-18120. DOI: 10.1073/pnas.1302751110.
  158. Strauss, M. S., & Curtis, L. E. (1981). Infant perception of numerosity. Child development, 52(4), 1146-1152. DOI: 10.2307/1129500.
  159. Thompson, C. A., & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: Effect of progressive alignment on representational changes in numerical cognition. Child Development, 81(6), 1768-1786. DOI: 10.1111/j.1467-8624.2010.01509.x.
  160. Toll, S. W., & Van Luit, J. E. (2014). Accelerating the early numeracy development of kindergartners with limited working memory skills through remedial education. Research in developmental disabilities, 34(2), 745-55. DOI: 10.1016/j.ridd.2012.09.003.
  161. Toll, S. W., & Van Luit, J. E. (2014). Explaining numeracy development in weak performing kindergartners. Journal of Experimental Child Psychology, 124, 97-111. DOI: 10.1016/j.jecp.2014.02.001.
  162. Van Marle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers’ quantitative development. Developmental science, 17(4), 492-505. DOI: 10.1016/j.jecp.2014.02.001.
  163. Vanbinst, K., Ghesquiere, P., & De Smedt, B. (2012). Numerical magnitude repre-sentations and individual differences in children’s arithmetic strategy use. Mind, Brain, and Education, 6(3), 129-136. DOI: 10.1111/j.1751-228x.2012.01148.x.
  164. Vanbinst, K., Ghesquière, P., & De Smedt, B. (2014). Arithmetic strategy develop-ment and its domain-specific and domain-general cognitive correlates: A longitudinal study in children with persistent mathematical learning difficulties. Research in developmental disabilities, 35(11), 3001-3013. DOI: 10.1016/j.ridd.2014.06.023.
  165. Vanbinst, K., Ghesquière, P., & De Smedt, B. (2015). Does numerical processing uniquely predict first graders’ future development of single-digit arithmetic?. Learning and Individual Differences, 37, 153-160. DOI: 10.1016/j.lin-dif.2014.12.004.
  166. Vanbinst, K., Ceulemans, E., Peters, L., Ghesquière, P., & De Smedt, B. (2018). Developmental trajectories of children’s symbolic numerical magnitude processing skills and associated cognitive competencies. Journal of experimental child psychology, 166, 232-250. DOI: 10.1016/j.jecp.2017.08.008.
  167. Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: A neural model. Journal of cognitive neuroscience, 16(9), 1493-1504. DOI: 10.1162/0898929042568497.
  168. Vigna, G., Ghidoni, E., Burgio, F., Danesin, L., Angelini, D., Benavides-Varela, S., & Semenza, C. (2022). Dyscalculia in early adulthood: Implications for numerical activities of daily living. Brain Sciences, 12(3), 373. DOI: 10.3390/brain-sci12030373.
  169. Vintere, A. (2021). A study on learning difficulties related to dyscalculia and mathematical anxiety. Research for Rural Development, 36, 330-336. DOI: 10.22616/rrd.27.2021.047.
  170. Vilette, B., Mawart, C., & Rusinek, S. (2010). L’outil «estimateur», la ligne numé-rique mentale et les habiletés arithmétiques. Pratiques psychologiques, 16(2), 203-214. DOI: 10.1016/j.prps.2009.10.002.
  171. Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and brain functions, 2, 1-16. DOI: 10.1186/1744-9081-2-20.
  172. Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. Human behavior, learning, and the developing brain: Atypical development, 2, 212-237.
  173. Wilson, A. J., Dehaene, S., Dubois, O., & Fayol, M. (2009). Effects of an adaptive game intervention on accessing number sense in low‐socioeconomic‐status kindergarten children. Mind, Brain, and Education, 3(4), 224-234. DOI: 10.1111/j.1751-228x.2009.01075.x.
  174. Wilkey, E. and Price, G. (2018). Attention to number: the convergence of numerical magnitude processing, attention, and mathematics in the inferior frontal gyrus. Human Brain Mapping, 40(3), 928-943. DOI: 10.1002/hbm.24422.
  175. Xenidou-Dervou, I., Molenaar, D., Ansari, D., van der Schoot, M., & van Lieshout, E. C. (2017). Nonsymbolic and symbolic magnitude comparison skills as longitudinal predictors of mathematical achievement. Learning and Instruction, 50, 1-13. DOI: 10.1016/j.learninstruc.2016.11.001.
  176. Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), 1-11. DOI: 10.1016/s0010-0277(99)00066-9.
  177. Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental science, 8(1), 88-101. DOI: 10.1111/j.1467-7687.2005.00395.x.
  178. Zoccolotti, P., De Luca, M., Marinelli, C. V., & Spinelli, D. (2020a). Predicting individual differences in reading, spelling and maths in a sample of typically developing children: A study in the perspective of comorbidity. PloS one, 15(4), e0231937. DOI: 10.1371/journal.pone.0231937.
  179. Zoccolotti P, De Luca M, Marinelli CV, & Spinelli D (2020b). Testing the specificity of predictors of reading, spelling and maths: a new model of the association among learning skills based on competence, performance and acquisition. Frontiers in Human Neuroscience, 14, 573998. DOI: 10.3389/fnhum.2020.573998.
  180. Zoccolotti P., De Luca M., & Marinelli C.V. (2021a). Interpreting developmental surface dyslexia within a comorbidity perspective. Brain Sciences, 11(12), 1568. DOI: 10.3390/brainsci11121568.
  181. Zoccolotti P., Angelelli P., Marinelli C.V., & Romano D.L. (2021b). A network analysis of the relationship among reading, spelling, and math skills. Brain Sciences, 11, 656. DOI: 10.3390/brainsci11050656.

Metrics

Metrics Loading ...