Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Articoli

Ultimi articoli

Lo sviluppo di abilità numeriche e aritmetiche nei bambini: l’elaborazione di quantità simboliche e non simboliche

DOI
https://doi.org/10.3280/rip2024oa19335
Inviata
4 febbraio 2025
Pubblicato
07-02-2025

Abstract

L’acquisizione di competenze numeriche e matematiche è uno degli obiettivi primari dell’istruzione formale. Il presente contributo è una rassegna critica degli studi che hanno esaminato lo sviluppo dell’elaborazione di quantità simboliche e non simboliche nei bambini di scuola primaria, e dell’impatto che queste abilità hanno sullo sviluppo delle competenze aritmetiche. Inoltre, sono esaminate le evidenze sulla discalculia evolutiva e sull’efficacia dei training per lo sviluppo della rappresentazione numerica. Una maggiore comprensione dello sviluppo della capacità di elaborare numerosità simboliche e non simboliche è fondamentale per predisporre interventi didattici più efficaci per l’acquisizione delle abilità numeriche e aritmetiche.

Riferimenti bibliografici

  1. Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariance in neonates. Child development, 695-701. DOI: 10.2307/1130057.
  2. Ansari, D., & Dhital, B. (2006). Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: an event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 18(11), 1820-1828. DOI: 10.1162/jocn.2006.18.11.1820.
  3. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature reviews neuroscience, 9(4), 278-291. DOI: 10.1038/nrn2334.
  4. Ashcraft, M. H., & Moore, A. M. (2012). Cognitive processes of numerical estimation in children. Journal of experimental child psychology, 111(2), 246-267. DOI: 10.1016/j.jecp.2011.08.005.
  5. Bailey, D. H., Littlefield, A., & Geary, D. C. (2012). The codevelopment of skill at and preference for use of retrieval-based processes for solving addition problems: Individual and sex differences from first to sixth grades. Journal of Experimental Child Psychology, 113(1), 78-92. DOI: 10.1016/j.jecp.2012.04.014.
  6. Bailey, D. H., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school fraction knowledge. Developmental science, 17(5), 775-785. DOI: 10.1111/desc.12155.
  7. Banks, W. P., Fujii, M., & Kayra-Stuart, F. (1976). Semantic congruity effects in comparative judgments of magnitudes of digits. Journal of Experimental Psychology: Human Perception and Performance, 2(3), 435. DOI: 10.1037/0096-1523.2.3.435.
  8. Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). What basic number pro-cessing measures in kindergarten explain unique variability in first-grade arithmetic proficiency?. Journal of experimental child psychology, 117, 12-28. DOI: 10.1016/j.jecp.2013.08.010.
  9. Basten, M., Jaekel, J., Johnson, S., Gilmore, C., & Wolke, D. (2015). Preterm birth and adult wealth: mathematics skills count. Psychological science, 26(10), 1608-1619. DOI: 10.1177/0956797615596230.
  10. Berch, D. B. (2005). Making sense of number sense: Implications for children with mathematical disabilities. Journal of learning disabilities, 38(4), 333-339. DOI: 10.1177/00222194050380040901.
  11. Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 41, 545-551. DOI: 10.1037/a0017887.
  12. Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of experimental child psychology, 114(3), 375-388. DOI: 10.1016/j.jecp.2012.09.015.
  13. Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental psychology, 42(1), 189. DOI: 10.1037/0012-1649.41.6.189.
  14. Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child development, 79(4), 1016-1031. DOI: 10.1111/j.1467-8624.2008.01173.x.
  15. Bortolato, C. (2023). La via del metodo analogico. Teoria per l’apprendimento intuitivo della matematica, Metodo Analogico. Trento: Edizioni Centro Studi Erickson S.p.A.
  16. Bortolato, C. (2011). La linea del 20. Metodo analogico per l’apprendimento del calcolo, Metodo Analogico Bortolato. Trento: Edizioni Centro Studi Erickson S.p.A.
  17. Brankaer, C., Ghesquiere, P., & Smedt, B.D. (2014). Children’s mapping between non-symbolic and symbolic numerical magnitudes and its association with timed and untimed tests of mathematics achievement. PLOS ONE, 9 (4). DOI: 10.1371/journal.pone.0093565.
  18. Bugden, S., Price, G. R., McLean, D. A., & Ansari, D. (2012). The role of the left intraparietal sulcus in the relationship between symbolic number processing and children's arithmetic competence. Developmental cognitive neuroscience, 2(4), 448-457. DOI: 10.1016/j.dcn.2012.04.001.
  19. Bugden, S., DeWind, N. K., & Brannon, E. M. (2016). Using cognitive training studies to unravel the mechanisms by which the approximate number system supports symbolic math ability. Current Opinion in Behavioral Sciences, 10, 73-80. DOI: 10.1016/j.cobeha.2016.05.002.
  20. Bugden, S., Park, A., Mackey, A., & Brannon, E. (2021). The neural basis of number word processing in children and adults. Developmental Cognitive Neuroscience, 51, 101011. DOI: 10.1016/j.dcn.2021.101011
  21. Butterworth, B. (1999). A head for figures. Science, 284(5416), 928-929. DOI: 10.1126/science.284.5416.928.
  22. Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. R. (2001). Storage and retrieval of addition facts: The role of number comparison. The Quarterly Journal of Experimental Psychology: Section A, 54(4), 1005-1029. DOI: 10.1080/713756007.
  23. Butterworth, B. (2005). Developmental dyscalculia. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 455-467). Psychology Press.
  24. Butterworth, B. (2005). The development of arithmetical abilities. Journal of child psychology and psychiatry, 46(1), 3-18. DOI: 10.1111/j.1469-7610.2004.00374.x.
  25. Butterworth, B., & Reigosa, V. (2007). Information processing deficits in dyscalculia. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 65-81). Baltimore, Maryland: Paul H. Brookes Publishing Co.
  26. Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534-541. DOI: 10.1016/b978-0-12-385948-8.00016-5.
  27. Butterworth, B., Varma, S., Laurillard, D. (2011). Dyscalculia: From Brain to Education, Science, 332(6033), 1049-53. DOI: 10.1126/science.1201536.
  28. Bynner, J., & Parsons, S. (1997). Does Numeracy Matter? Evidence from the National Child Development Study on the Impact of Poor Numeracy on Adult Life. London, England: Basic Skills Agency.
  29. Cantlon, J., Brannon, E., Carter, E., & Pelphrey, K. (2006). Functional imaging of numerical processing in adults and 4-y-old children. Plos Biology, 4(5), e125. DOI: 10.1371/journal.pbio.0040125.
  30. Castro, D., Estévez, N. & Pérez, O. (2009). Typical development of quantity comparison in school-aged children. The Spanish Journal of Psychology, 14, 50-61. DOI: 10.5209/rev_SJOP.2011.v14.n1.4.
  31. Castro, D., Reigosa-Crespo, V., & González, E. (2012). Non-symbolic and symbolic numerical magnitude processing in children with developmental dyscalculia. The Spanish Journal of Psychology, 15, 952-966. DOI: 10.5209/rev_SJOP.2012.v15.n3.39387.
  32. Chen, Q., & Li, J. (2014). Association between individual differences in nonsymbolic number acuity and math performance: a meta-analysis. Acta Psychology, 148, 163-72. DOI: 10.1016/j.actpsy.2014.01.016.
  33. Cowan, R., & Powell, D. (2014). The contributions of domain-general and numerical factors to third-grade arithmetic skills and mathematical learning disability. Journal of educational psychology, 106(1), 214. DOI: 10.1037/a0034097.
  34. Decarli, G., Paris, E., Tencati, C., Nardelli, C., Vescovi, M., Surian, L., & Piazza, M. (2020). Impaired large numerosity estimation and intact subitizing in developmental dyscalculia. PLoS One, 15(12). DOI: 10.1371/journal.pone.0244578.
  35. De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired ac-cess? Numerical magnitude processing in first graders with mathematical difficulties. Journal of experimental child psychology, 108(2), 278-292. DOI: 10.1016/j.jecp.2010.09.003.
  36. De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48-55. DOI: 10.1016/j.tine.2013.06.001.
  37. Dehaene, S. (1997). The number sense. New York: Oxford University Press.
  38. Dehaene, S. (2001). Précis of the number sense. Mind & language, 16(1), 16-36. DOI: 10.1111/1468-0017.00154.
  39. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506. DOI: 10.1080/02643290244000239.
  40. Dehaene, S. (2008). Symbols and quantities in parietal cortex: elements of a mathematical theory of number representation and manipulation. In P. Haggard, Y. Rossetti, & Y.M. Kawato (Eds.), Attention and Performance Series XXII (pp. 527-574). New York: Oxford University Press.
  41. Dehaene, S. (2011). The number sense: How the mind creates mathematics (2nd ed.). OUP USA.
  42. Desoete, A., Roeyers, H., & De Clercq, A. (2004). Children with mathematics learning disabilities in Belgium. Journal of learning disabilities, 37(1), 50-61. DOI: 10.1177/00222194040370010601.
  43. Desoete, A., Stock, P., Schepens, A., Baeyens, D., & Roeyers, H. (2009). Classification, seriation, and counting in grades 1, 2, and 3 as two-year longitudinal predictors for low achieving in numerical facility and arithmetical achievement?. Journal of Psychoeducational Assessment, 27(3), 252-264. DOI: 10.1177/0734282908330588.
  44. DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: effects of feedback and training. Frontiers in human neuroscience, 6, 68. DOI: 10.3389/fnhum.2012.00068.
  45. Diester, I., & Nieder, A. (2007). Semantic associations between signs and numerical categories in the prefrontal cortex. PLoS biology, 5(11), e294. DOI: 10.1371/journal.pbio.0050294.
  46. Diester, I., & Nieder, A. (2010). Numerical values leave a semantic imprint on associated signs in monkeys. Journal of Cognitive Neuroscience, 22(1), 174-183. DOI: 10.1162/jocn.2009.21193.
  47. Dowker, A. (2005). Early identification and intervention for students with mathematics difficulties. Journal of learning disabilities, 38(4), 324-332. DOI: 10.1177/00222194050380040801.
  48. Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., Pagani, L. S., Feinstein, L., Engel, M., Brooks-Gunn, J., Sexton, H., Duckworth, K., & Japel, C. (2007). School readiness and later achievement. Developmental psychology, 43(6), 1428-1446. DOI: 10.1037/0012-1649.43.6.1428.
  49. Dyson, N. I., Jordan, N. C., & Glutting, J. (2013). A number sense intervention for low-income kindergartners at risk for mathematics difficulties. Journal of learning disabilities, 46(2), 166-181. DOI: 10.1177/0022219411410233.
  50. Eger, E., Michel, V., Thirion, B., Amadon, A., Dehaene, S., & Kleinschmidt, A. (2009). Deciphering cortical number coding from human brain activity patterns. Current Biology, 19(19), 1608-1615. DOI: 10.1016/j.cub.2009.08.047.
  51. Emerson, R., & Cantlon, J. (2014). Continuity and change in children’s longitudinal neural responses to numbers. Developmental Science, 18(2), 314-326. DOI: 10.1111/desc.12215.
  52. Fayol, M., Camos, V., & Roussel, J. L. (2000). Acquisition et mise en oeuvre de la numération par les enfants de 2 à 9 ans. Neuropsychologie des troubles du calcul et du traitement des nombres, 33-58.
  53. Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of experimental child psychology, 123, 53-72. DOI: 10.1016/j.jecp.2014.01.013.
  54. Feigenson, L., & Halberda, J. (2004). Infants chunk object arrays into sets of individuals. Cognition, 91(2), 173-190. DOI: 10.1016/j.cognition.2003.09.003.
  55. Feigenson L, Dehaene S, & Spelke E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(30), 7-14. DOI: 10.1016/j.tics.2004.05.002.
  56. Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links between the intuitive sense of number and formal mathematics ability. Child development perspectives, 7(2), 74-79. DOI: 10.1111/cdep.12019.
  57. Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. A. (2003). Parietal representation of symbolic and non symbolic magnitude. Journal of cognitive neuroscience, 15(1), 47-56. DOI: 10.1162/089892903321107819.
  58. Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., & Bryant, J. D. (2010). The contributions of numerosity and domain-general abilities to school readiness. Child Development, 81(5), 1520-1533. DOI: 10.1111/j.1467-8624.2010.01489.x.
  59. Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in pre-schoolers from low‐income homes: Contributions of inhibitory control. Developmental science, 16(1), 136-148. DOI: 10.1111/desc.12013.
  60. Geary, D. C., Bow-Thomas, C. C., & Yao, Y. H. (1992). Counting knowledge and skill in cognitive addition: A comparison of normal and mathematically disabled children. Journal of Experimental Child Psychology, 54, 372-391. DOI: 10.1016/0022-0965(92)90026-3.
  61. Geary, D. C. (1993). Mathematical disabilities: cognitive, neuropsychological, and genetic components. Psychological bulletin, 114(2), 345. DOI: 10.1037/0033-2909.114.2.345.
  62. Geary, D.C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4-15. DOI: 10.1177/00222194040370010201.
  63. Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of experimental child psychology, 88(2), 121-151. DOI: 10.1016/j.jecp.2004.03.002.
  64. Geary, D. C., & Hoard, M. K. (2005). Learning disabilities in arithmetic and mathematics: Theoretical and empirical perspectives. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 253-267). Psychology Press.
  65. Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child development, 78(4), 1343-1359. DOI: 10.1111/j.1467-8624.2007.01069.x.
  66. Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line representations in children with mathematical learning disability. Developmental neuropsychology, 33(3), 277-299. DOI: 10.1080/87565640801982361
  67. Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642-648. DOI: 10.1037/a0026218.
  68. Gerber, P.J. (2012). The impact of learning disabilities on adulthood: A review of the evidenced-based literature for research and practice in adult education. Journal of Learning Disabilities, 45(1), 31-46. DOI: 10.1177/0022219411426858.
  69. Gersten, R., Jordan, N. C., & Flojo, J. R. (2005). Early identification and interventions for students with mathematics difficulties. Journal of learning disabilities, 38(4), 293-304. DOI: 10.1016/j.cognition.2010.02.002.
  70. Gilmore, C.K., McCarthy, S.E., & Spelke, E.S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394-406. DOI: 10.1016/j.cognition.2010.02.002.
  71. Gilmore, C., Attridge, N., De Smedt, B., & Inglis, M. (2014). Measuring the approximate number system in children: Exploring the relationships among different tasks. Learning and Individual Differences, 29, 50-58. DOI: 10.1016/j.lin-dif.2013.10.004.
  72. Girelli, L. & Melogno, S. (2020). Sviluppo e apprendimento delle abilità numeriche: dai meccanismi di quantificazione preverbali alla soluzione dei problemi aritmetici. In P. Zoccolotti (a cura di), I disturbi specifici di apprendimento. Manuale per la valutazione (pp. 313-338). Roma: Carocci editore.
  73. Gray, S. A., & Reeve, R. A. (2014). Preschoolers’ dot enumeration abilities are markers of their arithmetic competence. PLoS One, 9(4), e94428. DOI: 10.1371/journal.pone.0094428.
  74. Griffin, S. (2004). Building number sense with Number Worlds: A mathematics program for young children. Early childhood research quarterly, 19(1), 173-180. DOI: 10.1016/j.ecresq.2004.01.012.
  75. Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: the role of the linear number line. Developmental psychology, 48(5), 1229. DOI: 10.1037/a0027433.
  76. Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668. DOI: 10.1038/nature07246.
  77. Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the number sense: the approximate number system 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44, 1457-1465. DOI: 10.1037/a0012682.
  78. Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of experimental child psychology, 103(1), 17-29. DOI: 10.1016/j.jecp.2008.04.001.
  79. Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116-11120. DOI: 10.1073/pnas.1200196109.
  80. Honoré, N., & Noël, M. P. (2016). Improving preschoolers’ arithmetic through number magnitude training: The impact of non-symbolic and symbolic training. PloS one, 11(11), e0166685. DOI: 10.1371/journal.pone.0166685.
  81. Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92-107. DOI: 10.1016/j.cognition.2013.12.007.
  82. Iuculano, T., Tang, J., Hall, C. W., & Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental science, 11(5), 669-680. DOI: 10.1111/j.1467-7687.2008.00716.x.
  83. Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology, 85, 103-119. DOI: 10.1016/s0022-0965(03)00032-8.
  84. Jordan, J. A., Mulhern, G., & Wylie, J. (2009). Individual differences in trajectories of arithmetical development in typically achieving 5- to 7-year-olds. Journal of Experimental Child Psychology, 103, 469-479. DOI: 10.1016/j.jecp.2009.01.011.
  85. Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental neuropsychology, 36(6), 763-787. DOI: 10.1080/87565641.2010.549884.
  86. Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and instruction, 25, 95-103. DOI: 10.1016/j.learninstruc.2012.12.001.
  87. Koontz, K. L., & Berch, D. B. (1996). Identifying simple numerical stimuli: processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2(1), 1-23. DOI: 10.1080/135467996387525.
  88. Kucian, K., Loenneker, T., Martin, E., & von Aster, M. (2011). Non-symbolic numerical distance effect in children with and without developmental dyscalculia: a parametric fMRI study. Developmental neuropsychology, 36(6), 741-762. DOI: 10.1080/87565641.2010.549867.
  89. Kuzmina, Y., Tikhomirova, T., Lysenkova, I., & Malykh, S. (2020). Domain-general cognitive functions fully explained growth in nonsymbolic magnitude representation but not in symbolic representation in elementary school children. PloS one, 15(2). DOI: 10.1371/journal.pone.0228960.
  90. Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8-9-year-old students. Cognition, 93(2), 99-125. DOI: 10.1016/j.cognition.2003.11.004.
  91. Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of experimental child psychology, 103(4), 546-565. DOI: 10.1016/j.jecp.2008.12.006.
  92. Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103, 309-24. DOI: 10.1016/j.jecp.2009.03.006.
  93. Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child development, 78(6), 1723-1743. DOI: 10.1111/j.1467-8624.2007.01087.x.
  94. Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164. DOI: 10.1017/s0140525x16000960.
  95. LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner‐Wilger Marcie. (2010). Pathways to mathematics: longitudinal predictors of performance. Child Development, 81, 1753-1767. DOI: 10.1111/j.1467-8624.2010.01508.x.
  96. Liang, Y., Zhang, L., Duan, X., Wu, G., & Yan, H. (2023). Longitudinal association between non-symbolic numerical representation and emerging math competence: The dynamic mediation effect from cardinal knowledge to ordinal skills. Cognitive Development, 66, 101339. DOI: 10.1016/j.cogdev.2023.101339.
  97. Libertus, M. E., & Brannon, E. M. (2009). Behavioral and neural basis of number sense in infancy. Current Directions in Psychological Science, 18(6), 346-351. DOI: 10.1111/j.1467-8721.2009.01665.x.
  98. Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental science, 14(6), 1292-1300. DOI: 10.1111/j.1467-7687.2011.01080.x.
  99. Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities. Journal of Experimental Child Psychology, 116, 829-838. DOI: 10.1016/j.jecp.2013.08.003.
  100. Lourenco, S. F., & Bonny, J. W. (2017). Representations of numerical and non-nu-merical magnitude both contribute to mathematical competence in children. Developmental Science, 20(4), e12418. DOI: 10.1111/desc.12418.
  101. Lv, J., Mao, H., Zeng, L., Wang, X., Zhou, X., & Mou, Y. (2023). The developmental relationship between nonsymbolic and symbolic fraction abilities. Journal of experimental child psychology, 232, 105666. DOI: 10.1016/j.jecp.2023.105666.
  102. Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the rela-tion between number-sense and arithmetic competence. Cognition, 121(2), 256-261. DOI: 10.1016/j.cognition.2011.07.009.
  103. Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental science, 17(5), 714-726. DOI: 10.1111/desc.12152.
  104. Lyons, I. M., & Ansari, D. (2015). Foundations of children’s numerical and mathematical skills: The roles of symbolic and nonsymbolic representations of numerical magnitude. Advances in child development and behavior, 48, 93-116. DOI: 10.1016/bs.acdb.2014.11.003.
  105. Lyons, I. M., Nuerk, H. C., & Ansari, D. (2015). Rethinking the implications of numerical ratio effects for understanding the development of representational precision and numerical processing across formats. Journal of Experimental Psy-chology: General, 144(5), 1021. DOI: 10.1037/xge0000094.
  106. Mandler, G., & Shebo, B. J. (1982). Subitizing: an analysis of its component processes. Journal of experimental psychology: general, 111(1), 1. DOI: 10.1037/0096-3445.111.1.1.
  107. Marinelli, C. V., Martelli, M., & Zoccolotti, P. (2024). Does the procedural deficit hypothesis of dyslexia account for the lack of automatization and the comorbidity among developmental disorders? Cognitive Neuropsychology, 41(3-4), 93-112. DOI: 10.1080/02643294.2024.2393447.
  108. Marinelli, C. V., Angelelli, P., Martelli, M., Trenta, M., & Zoccolotti, P. (2021). Ability to Consolidate Instances as a Proxy for the Association Among Reading, Spelling, and Math Learning Skill. Frontiers in Psychology, 12, 761696. DOI: 10.3389/fpsyg.2021.761696.
  109. Matejko, A. A., & Ansari, D. (2016). Trajectories of symbolic and nonsymbolic magnitude processing in the first year of formal schooling. PloS one, 11(3), e0149863. DOI: 10.1371/journal.pone.0149863.
  110. Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011a). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One, 6(9). DOI: 10.1371/journal.pone.0023749.
  111. Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011b). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82, 1224-1237. DOI: 10.1111/j.1467-8624.2011.01608.x.
  112. Mejias, S., Mussolin, C., Rousselle, L., Grégoire, J., & Noël, M. P. (2012). Numerical and nonnumerical estimation in children with and without mathematical learning disabilities. Child Neuropsychology, 18(6), 550-575. DOI: 10.1080/09297049.2011.625355.
  113. Merkley, R., & Ansari, D. (2016). Why numerical symbols count in the development of mathematical skills: Evidence from brain and behavior. Current Opinion in Behavioral Sciences, 10, 14-20. DOI: 10.1016/j.cobeha.2016.04.006.
  114. Mou, Y., Li, Y., Hoard, M. K., Nugent, L. D., Chu, F. W., Rouder, J. N., & Geary, D. (2016). Developmental foundations of children’s fraction magnitude knowledge. Cognitive Development, 39, 141-153. DOI: 10.1016/j.cog-dev.2016.05.002.
  115. Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of experimental child psychology, 103(4), 490-502. DOI: 10.1016/j.jecp.2009.02.003.
  116. Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1), 10-25. DOI: 10.1016/j.cognition.2009.10.006.
  117. Mussolin, C., De Volder, A., Grandin, C., Schlogel, X., Nassogne, M., & Noël, M. (2010). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22(5), 860-874. DOI: 10.1162/jocn.2009.21237.
  118. Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual review of neuroscience, 32, 185-208. DOI: 10.1146/annurev.neuro.051508.135550.
  119. Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PloS one, 8(7), e67918. DOI: 10.1371/journal.pone.0067918.
  120. Nunez, R. E. (2017). Is there really an evolved capacity for number?. Trends in Cognitive Sciences, 21(6), 409-424. DOI: 10.1016/j.tics.2017.03.005.
  121. Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students’ basic number processing and arithmetic skills. Learning and Instruction, 23, 125-135. DOI: 10.1016/j.learninstruc.2012.08.004.
  122. Osmond, J. (1993). The Reality of Dyslexia. London: Cassell. Park, J., & Brannon, E. M. (2013). Training the approximate number system im-proves math proficiency. Psychological science, 24(10), 2013-2019. DOI: 10.1177/0956797613482944.
  123. Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1), 188-200. DOI: 10.1016/j.cognition.2014.06.011.
  124. Parsons, S., & Bynner, J. (2005). Measuring basic skills for longitudinal study: the design and development of instruments for use with cohort members in the age 34 follow-up in the 1970 British cohort study (BCS70). Literacy and Numeracy Studies, 14(2), 7-30.
  125. Piazza, M., Pinel, P., Le Bihan, D., Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron 53(2), 293-305. DOI: 10.1016/j.neuron.2006.11.022.
  126. Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14, 542-551. DOI: 10.1016/b978-0-12-385948-8.00017-7.
  127. Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17(24), 1042-1043. DOI: 10.1016/j.cub.2007.10.013.
  128. Price, G. R., & Fuchs, L. S. (2016). The mediating relation between symbolic and nonsymbolic foundations of math competence. PLoS One, 11(2), e0148981. DOI: 10.1371/journal.pone.0148981.
  129. Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low‐income children’s numerical knowledge through playing number board games. Child development, 79(2), 375-394. DOI: 10.1111/j.1467-8624.2007.01131.x.
  130. Ramani, G. B., & Siegler, R. S. (2011). Reducing the gap in numerical knowledge between low- and middle-income preschoolers. Journal of Applied Developmental Psychology, 32, 146-159. DOI: 10.1016/j.appdev.2011.02.005.
  131. Ramani, G. B., Siegler, R. S., & Hitti, A. (2012). Taking it to the classroom: Number board games as a small group learning activity. Journal of educational psychology, 104(3), 661. DOI: 10.1037/a0028995.
  132. Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive development, 24(4), 450-472. DOI: 10.1016/j.cogdev.2009.09.003.
  133. Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in markers of core numerical competencies. Journal of Experimental Psychology: General, 141(4), 649. DOI: 10.1037/a0027520.
  134. Reeve RA, Paul JM, Butterworth B. 2015. Longitudinal changes in young children’s 0-100 to 0-1000 numberline error signatures. Frontiers in Psychology, 6(647). DOI: 10.3389/fpsyg.2015.00647.
  135. Reigosa-Crespo, V., González-Alemañy, E., León, T., Torres, R., Mosquera, R., & Valdés-Sosa, M. (2013). Numerical capacities as domain-specific predictors beyond early mathematics learning: A longitudinal study. PloS One, 8(11), e79711. DOI: 10.1371/journal.pone.0079711.
  136. Rickard, T., Romero, S., Basso, G., Wharton, C., Flitman, S., & Grafman, J. (2000). The calculating brain: an fmri study. Neuropsychologia, 38(3), 325-335. DOI: 10.1016/s0028-3932(99)00068-8.
  137. Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological science, 24(7), 1301-1308. DOI: 10.1177/0956797612466268.
  138. Robinson, C. S., Menchetti, B. M., & Torgesen, J. K. (2002). Toward a two‐factor theory of one type of mathematics disabilities. Learning Disabilities Research & Practice, 17(2), 81-89. DOI: 10.1111/1540-5826.00035.
  139. Romano, C., Bruno, F., Milano, S., Nardacchione, G., & Marinelli, C.V. (in press). Il metodo analogico di Bortolato per gli studenti con disturbi specifico di appren-dimento (pp. 173-187). In G.A. Toto (a cura di). Un bootcamp per le competenze in Università. Trento: Edizioni Centro Studi Erickson S.p.A.
  140. Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2001). Attention and recognition memory in the 1st year of life: a longitudinal study of preterm and full-term infants. Developmental psychology, 37(1), 135. DOI: 10.1037/0012-1649.37.1.135.
  141. Ross-sheehy, S., Oakes, L. M., & Luck, S. J. (2003). The development of visual short-term memory capacity in infants. Child development, 74(6), 1807-1822. DOI: 10.1046/j.1467-8624.2003.00639.x.
  142. Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361-395. DOI: 10.1016/j.cognition.2006.01.005.
  143. Rubinsten, O., & Tannock, R. (2010). Mathematics anxiety in children with developmental dyscalculia. Behavioral and Brain functions, 6, 1-13. DOI: 10.1186/1744-9081-6-46.
  144. Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30(2), 344-357. DOI: 10.1046/j.1467-8624.2003.00639.x.
  145. Sasanguie, D., Van den Bussche, E., & Reynvoet, B. (2012). Predictors for mathematics achievement? Evidence from a longitudinal study. Mind, Brain, and Education, 6(3), 119-128. DOI: 10.1111/j.1751-228x.2012.01147.x.
  146. Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. Quarterly journal of experimental psychology, 67(2), 271-280. DOI: 10.1080/17470218.2013.803581.
  147. Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14(2), 280-291. DOI: 10.1111/j.1467-7687.2010.00976.x.
  148. Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3). DOI: 10.1111/desc.12372.
  149. Shrager, J., & Siegler, R. S. (1998). SCADS: A model of children’s strategy choices and strategy discoveries. Psychological science, 9(5), 405-410. DOI: 10.1111/1467-9280.00076.
  150. Siegler, R. S. (1996). Emerging minds: The process of change in children’s thinking. New York: Oxford University Press.
  151. Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological science, 14(3), 237-250. DOI: 10.1111/1467-9280.02438.
  152. Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child development, 75(2), 428-444. DOI: 10.1111/j.1467-8624.2004.00684.x.
  153. Siegler, R. S., & Ramani, G. B. (2008). Playing linear numerical board games promotes low‐income children’s numerical development. Developmental science, 11(5), 655-661. DOI: 10.1111/j.1467-7687.2008.00714.x.
  154. Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games – but not circular ones – improves low-income preschoolers’ numerical understanding. Journal of educational psychology, 101(3), 545. DOI: 10.1037/a0014239.
  155. Siegler, R. S., & Lortie-Forgues, H. (2014). An integrative theory of numerical development. Child Development Perspectives, 8(3), 144-150. DOI: 10.1111/cdep.12077.
  156. Sekuler, R., & Mierkiewicz, D. (1977). Children’s judgments of numerical inequality. Child Development, 48(2), 630-633. DOI: 10.2307/1128664.
  157. Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences, 110(45), 18116-18120. DOI: 10.1073/pnas.1302751110.
  158. Strauss, M. S., & Curtis, L. E. (1981). Infant perception of numerosity. Child development, 52(4), 1146-1152. DOI: 10.2307/1129500.
  159. Thompson, C. A., & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: Effect of progressive alignment on representational changes in numerical cognition. Child Development, 81(6), 1768-1786. DOI: 10.1111/j.1467-8624.2010.01509.x.
  160. Toll, S. W., & Van Luit, J. E. (2014). Accelerating the early numeracy development of kindergartners with limited working memory skills through remedial education. Research in developmental disabilities, 34(2), 745-55. DOI: 10.1016/j.ridd.2012.09.003.
  161. Toll, S. W., & Van Luit, J. E. (2014). Explaining numeracy development in weak performing kindergartners. Journal of Experimental Child Psychology, 124, 97-111. DOI: 10.1016/j.jecp.2014.02.001.
  162. Van Marle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers’ quantitative development. Developmental science, 17(4), 492-505. DOI: 10.1016/j.jecp.2014.02.001.
  163. Vanbinst, K., Ghesquiere, P., & De Smedt, B. (2012). Numerical magnitude repre-sentations and individual differences in children’s arithmetic strategy use. Mind, Brain, and Education, 6(3), 129-136. DOI: 10.1111/j.1751-228x.2012.01148.x.
  164. Vanbinst, K., Ghesquière, P., & De Smedt, B. (2014). Arithmetic strategy develop-ment and its domain-specific and domain-general cognitive correlates: A longitudinal study in children with persistent mathematical learning difficulties. Research in developmental disabilities, 35(11), 3001-3013. DOI: 10.1016/j.ridd.2014.06.023.
  165. Vanbinst, K., Ghesquière, P., & De Smedt, B. (2015). Does numerical processing uniquely predict first graders’ future development of single-digit arithmetic?. Learning and Individual Differences, 37, 153-160. DOI: 10.1016/j.lin-dif.2014.12.004.
  166. Vanbinst, K., Ceulemans, E., Peters, L., Ghesquière, P., & De Smedt, B. (2018). Developmental trajectories of children’s symbolic numerical magnitude processing skills and associated cognitive competencies. Journal of experimental child psychology, 166, 232-250. DOI: 10.1016/j.jecp.2017.08.008.
  167. Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: A neural model. Journal of cognitive neuroscience, 16(9), 1493-1504. DOI: 10.1162/0898929042568497.
  168. Vigna, G., Ghidoni, E., Burgio, F., Danesin, L., Angelini, D., Benavides-Varela, S., & Semenza, C. (2022). Dyscalculia in early adulthood: Implications for numerical activities of daily living. Brain Sciences, 12(3), 373. DOI: 10.3390/brain-sci12030373.
  169. Vintere, A. (2021). A study on learning difficulties related to dyscalculia and mathematical anxiety. Research for Rural Development, 36, 330-336. DOI: 10.22616/rrd.27.2021.047.
  170. Vilette, B., Mawart, C., & Rusinek, S. (2010). L’outil «estimateur», la ligne numé-rique mentale et les habiletés arithmétiques. Pratiques psychologiques, 16(2), 203-214. DOI: 10.1016/j.prps.2009.10.002.
  171. Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and brain functions, 2, 1-16. DOI: 10.1186/1744-9081-2-20.
  172. Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. Human behavior, learning, and the developing brain: Atypical development, 2, 212-237.
  173. Wilson, A. J., Dehaene, S., Dubois, O., & Fayol, M. (2009). Effects of an adaptive game intervention on accessing number sense in low‐socioeconomic‐status kindergarten children. Mind, Brain, and Education, 3(4), 224-234. DOI: 10.1111/j.1751-228x.2009.01075.x.
  174. Wilkey, E. and Price, G. (2018). Attention to number: the convergence of numerical magnitude processing, attention, and mathematics in the inferior frontal gyrus. Human Brain Mapping, 40(3), 928-943. DOI: 10.1002/hbm.24422.
  175. Xenidou-Dervou, I., Molenaar, D., Ansari, D., van der Schoot, M., & van Lieshout, E. C. (2017). Nonsymbolic and symbolic magnitude comparison skills as longitudinal predictors of mathematical achievement. Learning and Instruction, 50, 1-13. DOI: 10.1016/j.learninstruc.2016.11.001.
  176. Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), 1-11. DOI: 10.1016/s0010-0277(99)00066-9.
  177. Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental science, 8(1), 88-101. DOI: 10.1111/j.1467-7687.2005.00395.x.
  178. Zoccolotti, P., De Luca, M., Marinelli, C. V., & Spinelli, D. (2020a). Predicting individual differences in reading, spelling and maths in a sample of typically developing children: A study in the perspective of comorbidity. PloS one, 15(4), e0231937. DOI: 10.1371/journal.pone.0231937.
  179. Zoccolotti P, De Luca M, Marinelli CV, & Spinelli D (2020b). Testing the specificity of predictors of reading, spelling and maths: a new model of the association among learning skills based on competence, performance and acquisition. Frontiers in Human Neuroscience, 14, 573998. DOI: 10.3389/fnhum.2020.573998.
  180. Zoccolotti P., De Luca M., & Marinelli C.V. (2021a). Interpreting developmental surface dyslexia within a comorbidity perspective. Brain Sciences, 11(12), 1568. DOI: 10.3390/brainsci11121568.
  181. Zoccolotti P., Angelelli P., Marinelli C.V., & Romano D.L. (2021b). A network analysis of the relationship among reading, spelling, and math skills. Brain Sciences, 11, 656. DOI: 10.3390/brainsci11050656.

Metriche

Caricamento metriche ...