Articoli. Cambiamento climatico e geografia
N. 2 (2022)
Gli agenti di destabilizzazione e la transizione energetica
Abstract
L’articolo analizza gli ‘agenti di destabilizzazione’, cioè i soggetti che possono erodere il potere del blocco fossile per agevolare una rapida transizione verso sistemi socio-energetici a bassa intensità carbonica. Gli agenti che modificano i contesti sociali, economici e politici in cui il blocco fossile opera sono considerati forze ‘primarie’ e indirizzano i loro sforzi verso l’erosione delle forme strumentali e discorsive del potere del blocco fossile. Gli agenti che utilizzano i mercati e gli strumenti politici, amministrativi e legali per modificare in senso virtuoso il comportamento del blocco fossile sono definite forze ‘operative’ e mirano a scardinarne il potere istituzionale e materiale. Questa categorizzazione, consentendo di collegare specifici agenti di destabilizzazione a specifiche forme di potere del blocco fossile, fornisce un riferimento analitico per condurre studi empirici sulla transazione energetica.
Riferimenti bibliografici
- Binz C., Coenen L., Murphy J.T. (2020). Geographies of transition. From topical concerns to theoretical engagement: A commentary on the transitions research agenda. Environmental Innovation and Societal Transitions, 34: 1-3. DOI: 10.1016/j.eist.2019.11.002
- Id., Harris-Lovett S., Kiparsky M., Sedlak D.L., Truffer B. (2016). The thorny road to technology legitimation. Institutional work for potable water reuse in California. Technological Forecasting and Social Change, 103: 249-263. DOI: 10.1016/j.techfore.2015.10.005
- Bova S., Rosenthal Y., Liu Z., Godad S.P., Yan M. (2021). Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature, 589(7843): 548-553. DOI: 10.1038/s41586-020-03155-x
- Bradshaw C.J.A. et al. (2021). Underestimating the challenges of avoiding a ghastly future. Front. Conserv. Sci. DOI: 10.3389/fcosc.2020.615419
- Carley S., Konisky D.M. (2020). The justice and equity implications of the clean energy transition. Nature Energy, 5: 569-577. DOI: 10.1038/s41560-020-0641-6
- Chaminade C., Randelli F. (2020). The role of territorially embedded innovation ecosystems accelerating sustainability transformations: A case study of the transformation to organic wine production in Tuscany (Italy). Sustainability, 12(11): 4621. DOI: 10.3390/su12114621
- Ciplet D., Harrison J.L. (2020). Transition tensions: mapping conflicts in movements for a just and sustainable transition. Environmental Politics, 29: 435-456. DOI: 10.1080/09644016.2019.1595883
- Coenen L., Benneworth P., Truffer B. (2012). Towards a spatial perspective on sustainability transitions. Research Policy, 41: 968-979. DOI: 10.1016/j.respol.2012.02.014
- Cook J., Nuccitelli D., Green S.A., Richardson M., Winkler B., Painting R., Skuce A. (2013). Quantifying the consensus on anthropogenic global warming in the scientific literature. Environmental Research Letters, 8(2): 024024. DOI: 10.1088/1748-9326/8/2/024024
- Id., Oreskes N., Doran P.T., Anderegg W.R., Verheggen B., Maibach E.W., Nuccitelli D. (2016). Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environmental Research Letters, 11(4): 048002. DOI: 10.1088/1748-9326/11/4/048002
- Davidson D.J. (2019). Exnovating for a renewable energy transition. Nature Energy, 4: 254-256. DOI: 10.1038/s41560-019-0369-3
- Della Porta D., Diani M. (2009). Social Movements: An Introduction (Second Edition). Oxford: Blackwell Publishing.
- Desing H., Widmer R. (2021). Reducing climate risks with fast and complete energy transitions: applying the precautionary principle to the Paris agreement. Environmental Research Letters, 16, 121002, 12. DOI: 10.1088/1748-9326/ac36f9
- Diani M. (1992). The concept of social movement. The Sociological Review, 40(1): 1-25. DOI: 10.1111/j.1467-954X.1992.tb02943.x
- Farmer J.D., Hepburn C., Ives M.C., Hale T., Wetzer T., Mealy P., Way R. (2019). Sensitive intervention points in the post-carbon transition. Science, 364(6436): 132-134. DOI: 10.1126/science.aaw7287
- Ford A., Newell P. (2021). Regime resistance and accommodation: Toward a neo-Gramscian perspective on energy transitions. Energy Research & Social Science, 79, 102163. DOI: 10.1016/j.erss.2021.102163
- Frantzeskaki N., van Steenbergen F., Stedman R.C. (2018). Sense of place and experimentation in urban sustainability transitions: the Resilience Lab in Carnisse, Rotterdam, The Netherlands. Sustainability Science, 13(4): 1045-1059. DOI: 10.1007/s11625-018-0562-5
- Geels F.W. (2014). Regime resistance against low-carbon transitions: introducing politics and power into the multi-level perspective. Theory, Culture & Society, 31(5): 21-40. DOI: 10.1177/0263276414531627
- Id., Berkhout F., van Vuuren D.P. (2016). Bridging analytical approaches for low-carbon transitions. Nature Climate Change, 6: 576-583. DOI: 10.1038/nclimate2980
- Goodwin P., Williams R.G., Ridgwell A. (2015). Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nature Geoscience, 8(1): 29. DOI: 10.1038/ngeo2304
- Grasso M. (2022). From Big Oil to Big Green. Holding the Oil Industry to Account for the Climate Crisis. Cambridge MA: MIT Press.
- Id., Markowitz E.M. (2015). The moral complexity of climate change and the need for a multidisciplinary perspective on climate ethics. Climatic Change, 130: 327-334. DOI: 10.1007/s10584-014-1323-9
- Grillitsch M., Sotarauta M. (2020). Trinity of change agency, regional development paths and opportunity spaces. Progress in Human Geography, 44(4): 704-723. DOI: 10.1177/0309132519853870
- Grubler A. (2012). Energy transitions research: Insights and cautionary tales. Energy Policy, 50: 8-16. DOI: 10.1016/j.enpol.2012.02.070
- Hansen T., Coenen L. (2015). The geography of sustainability transitions: Review, synthesis and reflections on an emergent research field. Environmental Innovation and Societal Transitions, 17: 92-109. DOI: 10.1016/j.eist.2014.11.001
- Heffron R.J., McCauley D. (2018). What is the ‘Just Transition’? Geoforum, 88: 74-77. DOI: 10.1016/j.geoforum.2017.11.016
- Hess D.J. (2014). Sustainability transitions: A political coalition perspective. Research Policy, 43(2): 278-283. DOI: 10.1016/j.respol.2013.10.008
- IEA – International Energy Agency (2021). Net Zero by 2050. A Roadmap for the Global Energy Sector. Parigi: IEA.
- IPCC – International Panel on Climate Change (2018). Special Report. Global Warming of 1.5 °C. Ginevra: IPCC.
- Id. (2021). AR6 Climate Change 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
- Id. (2022). AR6 Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
- Johnsson F., Kjärstad J., Rootzén J. (2019). The threat to climate change mitigation posed by the abundance of fossil fuels. Climate Policy, 19: 258-274. DOI: 10.1080/14693062.2018.1483885
- Kaufman D. et al. (2020). A global database of Holocene paleotemperature records. Scientific Data, 7, 115. DOI: 10.1038/s41597-020-0445-3
- Kivimaa P., Laakso S., Lonkila A., Kaljonen M. (2021). Moving beyond disruptive innovation: A review of disruption in sustainability transitions. Environmental Innovation and Societal Transitions, 38: 110-126. DOI: 10.1016/j.eist.2020.12.001
- Köhler J. et al. (2019). An agenda for sustainability transitions research: State of the art and future directions. Environmental Innovation and Societal Transitions, 31: 1-32. DOI: 10.1016/j.eist.2019.01.004
- Lamine C., Magda D., Amiot M.J. (2019). Crossing sociological, ecological, and nutritional perspectives on agrifood systems transitions: Towards a transdisciplinary territorial approach. Sustainability, 11(5): 1284. DOI: 10.3390/su11051284
- Lenton T.M., Rockström J., Gaffney O., Rahmstorf S., Richardson K., Steffen W., Schellnhuber H.J. (2019). Climate tipping points - too risky o bet against. Nature, 575: 592-595. DOI: 10.1038/d41586-019-03595-0
- Levy D.L., Newell P.J. (2002). Business strategy and international environmental governance: Toward a neo-Gramscian synthesis. Global Environmental Politics, 2(4): 84-101. DOI: 10.1162/152638002320980632
- Lindberg M.B., Markard J., Andersen A.D. (2019). Policies, actors and sustainability transition pathways: A study of the EU’s energy policy mix. Research policy, 48(10): 103668. DOI: 10.1016/j.respol.2018.09.003
- Liu P.R., Raftery A.E. (2021). Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 °C target.
- Communications Earth & Environment, 2(29). DOI: 10.1038/s43247-021-00097-8
- Loorbach D., Frantzeskaki N., Avelino F. (2017). Sustainability transitions research: Transforming science and practice for societal change. Annual Review of Environment and Resources, 42: 599-626. DOI: 10.1146/annurev-environ-102014-021340
- Meckling J., Sterner T., Wagner G. (2017). Policy sequencing toward decarbonization. Nature Energy, 2: 918-922. DOI: 10.1038/s41560-017-0025-8
- Mengel M., Nauels A., Rogelj J., Schleussner C.F. (2018). Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nature Communications, 9(1): 601. DOI: 10.5281/zenodo.1118288.
- Miller C.A., Richter J., O’Leary J. (2015): Socio-energy systems design: A policy framework for energy transitions. Energy Research & Social Science, 6: 29-40. DOI: 10.1016/j.erss.2014.11.004
- Murphy J.T. (2015). Human geography and socio-technical transition studies: Promising intersections. Environmental Innovation and Societal Transitions, 17: 73-91. DOI: 10.1016/j.eist.2015.03.002
- Newell P.J., Paterson M. (1998). A climate for business: global warming, the state and capital. Review of International Political Economy, 5(4): 679-703. DOI: 10.1080/096922998347426
- Patterson J.J. et al. (2018). Political feasibility of 1.5 °C societal transformations: the role of social justice. Current Opinion in Environmental Sustainability, 31: 1-9. DOI: 10.1016/j.cosust.2017.11.002
- Peters G.P., Andrew R.M., Canadell J.G. et al. (2020). Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change, 10: 3-6. DOI: 10.1038/s41558-019-0659-6
- Roberts C., Geels F.W., Lockwood M., Newell P., Schmitz H., Turnheim B., Jordan A. (2018). The politics of accelerating low-carbon transitions: Towards a new research agenda. Energy Research & Social Science, 44: 304-311. DOI: 10.1016/j.erss.2018.06.001
- Rosenbloom D., Berton H., Meadowcroft J. (2016). Framing the sun: A discursive approach to understanding multi-dimensional interactions within socio-technical transitions through the case of solar electricity in Ontario, Canada. Research Policy, 45(6): 1275-1290. DOI: 10.1016/j.respol.2016.03.012
- Id., Rinscheid A. (2020). Deliberate decline: An emerging frontier for the study and practice of decarbonization. WIREs Climate Change, 11: e669. DOI: 10.1002/wcc.669
- Santer B.D., Bonfils C.J., Fu Q., Fyfe J.C., Hegerl G.C., Mears C., Zou C.Z. (2019). Celebrating the anniversary of three key events in climate change science. Nature Climate Change, 9(3): 180-182. DOI: 10.1038/s41558-019-0424-x
- Seto K.C., Davis S.J., Mitchell R.B., Stokes E.C., Unruh G., Ürge-Vorsatz (2016). Carbon lock-in: types, causes, and policy implications. Annual Review of Environment and Resources, 41: 425-452. DOI: 10.1146/annurev-environ-110615-085934
- Skjærseth J.B., Andresen S., Bang G., Heggelund G.M. (2021). The Paris agreement and key actors’ domestic climate policy mixes: comparative patterns. International Environmental Agreements, 21: 59-73. DOI: 10.1007/s10784-021-09531-w
- Smith A., Stirling A., Berkhout F. (2005). The governance of sustainable socio-technical transitions. Research Policy, 34: 1491-1510. DOI: 10.1080/096922998347426
- Smith C.J. et al. (2019). Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nature Communications, 10: 101. DOI: 10.1038/s41467-018-07999-w
- Sonnino R., Marsden T., Moragues-Faus A. (2016). Relationalities and convergences in food security narratives: towards a place-based approach. Transactions of the Institute of British Geographers, 41(4): 477-489. DOI: 10.1111/tran.12137
- Sovacool B.K., Hess D.J., Cantoni R. (2021). Energy transitions from the cradle to the grave: A meta-theoretical framework integrating responsible innovation, social practices, and energy justice. Energy Research & Social Science, 75: 102027. DOI: 10.1016/j.erss.2021.102027
- Strambach S., Pflitsch G. (2020). Transition topology: Capturing institutional dynamics in regional development paths to sustainability. Research Policy, 49(7): 104006. DOI: 10.1016/j.respol.2020.104006
- Supran G. (2021). Fueling their own climate narrative. Science, 374(6568): 702. DOI: 10.1126/science.abm3434
- Turnheim B., Geels F.W. (2012). Regime destabilisation as the flipside of energy transitions: Lessons from the history of the British coal industry (1913-1997). Energy Policy, 50: 35-49. DOI: 10.1016/j.enpol.2012.04.060
- UNEP – United Nations Environment Programme (2021). The Emissions Gap Report 2021. Nairobi: UNEP.
- Victoria M., Zhu K., Brown T., Andresen G.B., Greiner M. (2020). Early decarbonisation of the European energy system pays off. Nature Communications, 11: 6223. DOI: 10.1038/s41467-020-20015-4
- Xu C., Kohler T.A., Lenton T.M., Svenning J.-C., Scheffer M. (2020). Future of the human climate niche. Proceedings of the National Academies of Sciences - PNAS, 117: 11350-11355. DOI: 10.1073/pnas.1910114117
- Zhang Y., Held I., Fueglistaler S. (2021). Projections of tropical heat stress constrained by atmospheric dynamics. Nature Geoscience, 14: 133-137. DOI: 10.1038/s41561-021-00695-3