Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Articoli. Cambiamento climatico e geografia

N. 2 (2022)

Gli agenti di destabilizzazione e la transizione energetica

  • Marco Grasso
11 maggio 2022


L’articolo analizza gli ‘agenti di destabilizzazione’, cioè i soggetti che possono erodere il potere del blocco fossile per agevolare una rapida transizione verso sistemi socio-energetici a bassa intensità carbonica. Gli agenti che modificano i contesti sociali, economici e politici in cui il blocco fossile opera sono considerati forze ‘primarie’ e indirizzano i loro sforzi verso l’erosione delle forme strumentali e discorsive del potere del blocco fossile. Gli agenti che utilizzano i mercati e gli strumenti politici, amministrativi e legali per modificare in senso virtuoso il comportamento del blocco fossile sono definite forze ‘operative’ e mirano a scardinarne il potere istituzionale e materiale. Questa categorizzazione, consentendo di collegare specifici agenti di destabilizzazione a specifiche forme di potere del blocco fossile, fornisce un riferimento analitico per condurre studi empirici sulla transazione energetica.

Riferimenti bibliografici

  1. Binz C., Coenen L., Murphy J.T. (2020). Geographies of transition. From topical concerns to theoretical engagement: A commentary on the transitions research agenda. Environmental Innovation and Societal Transitions, 34: 1-3. DOI: 10.1016/j.eist.2019.11.002
  2. Id., Harris-Lovett S., Kiparsky M., Sedlak D.L., Truffer B. (2016). The thorny road to technology legitimation. Institutional work for potable water reuse in California. Technological Forecasting and Social Change, 103: 249-263. DOI: 10.1016/j.techfore.2015.10.005
  3. Bova S., Rosenthal Y., Liu Z., Godad S.P., Yan M. (2021). Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature, 589(7843): 548-553. DOI: 10.1038/s41586-020-03155-x
  4. Bradshaw C.J.A. et al. (2021). Underestimating the challenges of avoiding a ghastly future. Front. Conserv. Sci. DOI: 10.3389/fcosc.2020.615419
  5. Carley S., Konisky D.M. (2020). The justice and equity implications of the clean energy transition. Nature Energy, 5: 569-577. DOI: 10.1038/s41560-020-0641-6
  6. Chaminade C., Randelli F. (2020). The role of territorially embedded innovation ecosystems accelerating sustainability transformations: A case study of the transformation to organic wine production in Tuscany (Italy). Sustainability, 12(11): 4621. DOI: 10.3390/su12114621
  7. Ciplet D., Harrison J.L. (2020). Transition tensions: mapping conflicts in movements for a just and sustainable transition. Environmental Politics, 29: 435-456. DOI: 10.1080/09644016.2019.1595883
  8. Coenen L., Benneworth P., Truffer B. (2012). Towards a spatial perspective on sustainability transitions. Research Policy, 41: 968-979. DOI: 10.1016/j.respol.2012.02.014
  9. Cook J., Nuccitelli D., Green S.A., Richardson M., Winkler B., Painting R., Skuce A. (2013). Quantifying the consensus on anthropogenic global warming in the scientific literature. Environmental Research Letters, 8(2): 024024. DOI: 10.1088/1748-9326/8/2/024024
  10. Id., Oreskes N., Doran P.T., Anderegg W.R., Verheggen B., Maibach E.W., Nuccitelli D. (2016). Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environmental Research Letters, 11(4): 048002. DOI: 10.1088/1748-9326/11/4/048002
  11. Davidson D.J. (2019). Exnovating for a renewable energy transition. Nature Energy, 4: 254-256. DOI: 10.1038/s41560-019-0369-3
  12. Della Porta D., Diani M. (2009). Social Movements: An Introduction (Second Edition). Oxford: Blackwell Publishing.
  13. Desing H., Widmer R. (2021). Reducing climate risks with fast and complete energy transitions: applying the precautionary principle to the Paris agreement. Environmental Research Letters, 16, 121002, 12. DOI: 10.1088/1748-9326/ac36f9
  14. Diani M. (1992). The concept of social movement. The Sociological Review, 40(1): 1-25. DOI: 10.1111/j.1467-954X.1992.tb02943.x
  15. Farmer J.D., Hepburn C., Ives M.C., Hale T., Wetzer T., Mealy P., Way R. (2019). Sensitive intervention points in the post-carbon transition. Science, 364(6436): 132-134. DOI: 10.1126/science.aaw7287
  16. Ford A., Newell P. (2021). Regime resistance and accommodation: Toward a neo-Gramscian perspective on energy transitions. Energy Research & Social Science, 79, 102163. DOI: 10.1016/j.erss.2021.102163
  17. Frantzeskaki N., van Steenbergen F., Stedman R.C. (2018). Sense of place and experimentation in urban sustainability transitions: the Resilience Lab in Carnisse, Rotterdam, The Netherlands. Sustainability Science, 13(4): 1045-1059. DOI: 10.1007/s11625-018-0562-5
  18. Geels F.W. (2014). Regime resistance against low-carbon transitions: introducing politics and power into the multi-level perspective. Theory, Culture & Society, 31(5): 21-40. DOI: 10.1177/0263276414531627
  19. Id., Berkhout F., van Vuuren D.P. (2016). Bridging analytical approaches for low-carbon transitions. Nature Climate Change, 6: 576-583. DOI: 10.1038/nclimate2980
  20. Goodwin P., Williams R.G., Ridgwell A. (2015). Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nature Geoscience, 8(1): 29. DOI: 10.1038/ngeo2304
  21. Grasso M. (2022). From Big Oil to Big Green. Holding the Oil Industry to Account for the Climate Crisis. Cambridge MA: MIT Press.
  22. Id., Markowitz E.M. (2015). The moral complexity of climate change and the need for a multidisciplinary perspective on climate ethics. Climatic Change, 130: 327-334. DOI: 10.1007/s10584-014-1323-9
  23. Grillitsch M., Sotarauta M. (2020). Trinity of change agency, regional development paths and opportunity spaces. Progress in Human Geography, 44(4): 704-723. DOI: 10.1177/0309132519853870
  24. Grubler A. (2012). Energy transitions research: Insights and cautionary tales. Energy Policy, 50: 8-16. DOI: 10.1016/j.enpol.2012.02.070
  25. Hansen T., Coenen L. (2015). The geography of sustainability transitions: Review, synthesis and reflections on an emergent research field. Environmental Innovation and Societal Transitions, 17: 92-109. DOI: 10.1016/j.eist.2014.11.001
  26. Heffron R.J., McCauley D. (2018). What is the ‘Just Transition’? Geoforum, 88: 74-77. DOI: 10.1016/j.geoforum.2017.11.016
  27. Hess D.J. (2014). Sustainability transitions: A political coalition perspective. Research Policy, 43(2): 278-283. DOI: 10.1016/j.respol.2013.10.008
  28. IEA – International Energy Agency (2021). Net Zero by 2050. A Roadmap for the Global Energy Sector. Parigi: IEA.
  29. IPCC – International Panel on Climate Change (2018). Special Report. Global Warming of 1.5 °C. Ginevra: IPCC.
  30. Id. (2021). AR6 Climate Change 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
  31. Id. (2022). AR6 Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
  32. Johnsson F., Kjärstad J., Rootzén J. (2019). The threat to climate change mitigation posed by the abundance of fossil fuels. Climate Policy, 19: 258-274. DOI: 10.1080/14693062.2018.1483885
  33. Kaufman D. et al. (2020). A global database of Holocene paleotemperature records. Scientific Data, 7, 115. DOI: 10.1038/s41597-020-0445-3
  34. Kivimaa P., Laakso S., Lonkila A., Kaljonen M. (2021). Moving beyond disruptive innovation: A review of disruption in sustainability transitions. Environmental Innovation and Societal Transitions, 38: 110-126. DOI: 10.1016/j.eist.2020.12.001
  35. Köhler J. et al. (2019). An agenda for sustainability transitions research: State of the art and future directions. Environmental Innovation and Societal Transitions, 31: 1-32. DOI: 10.1016/j.eist.2019.01.004
  36. Lamine C., Magda D., Amiot M.J. (2019). Crossing sociological, ecological, and nutritional perspectives on agrifood systems transitions: Towards a transdisciplinary territorial approach. Sustainability, 11(5): 1284. DOI: 10.3390/su11051284
  37. Lenton T.M., Rockström J., Gaffney O., Rahmstorf S., Richardson K., Steffen W., Schellnhuber H.J. (2019). Climate tipping points - too risky o bet against. Nature, 575: 592-595. DOI: 10.1038/d41586-019-03595-0
  38. Levy D.L., Newell P.J. (2002). Business strategy and international environmental governance: Toward a neo-Gramscian synthesis. Global Environmental Politics, 2(4): 84-101. DOI: 10.1162/152638002320980632
  39. Lindberg M.B., Markard J., Andersen A.D. (2019). Policies, actors and sustainability transition pathways: A study of the EU’s energy policy mix. Research policy, 48(10): 103668. DOI: 10.1016/j.respol.2018.09.003
  40. Liu P.R., Raftery A.E. (2021). Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 °C target.
  41. Communications Earth & Environment, 2(29). DOI: 10.1038/s43247-021-00097-8
  42. Loorbach D., Frantzeskaki N., Avelino F. (2017). Sustainability transitions research: Transforming science and practice for societal change. Annual Review of Environment and Resources, 42: 599-626. DOI: 10.1146/annurev-environ-102014-021340
  43. Meckling J., Sterner T., Wagner G. (2017). Policy sequencing toward decarbonization. Nature Energy, 2: 918-922. DOI: 10.1038/s41560-017-0025-8
  44. Mengel M., Nauels A., Rogelj J., Schleussner C.F. (2018). Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nature Communications, 9(1): 601. DOI: 10.5281/zenodo.1118288.
  45. Miller C.A., Richter J., O’Leary J. (2015): Socio-energy systems design: A policy framework for energy transitions. Energy Research & Social Science, 6: 29-40. DOI: 10.1016/j.erss.2014.11.004
  46. Murphy J.T. (2015). Human geography and socio-technical transition studies: Promising intersections. Environmental Innovation and Societal Transitions, 17: 73-91. DOI: 10.1016/j.eist.2015.03.002
  47. Newell P.J., Paterson M. (1998). A climate for business: global warming, the state and capital. Review of International Political Economy, 5(4): 679-703. DOI: 10.1080/096922998347426
  48. Patterson J.J. et al. (2018). Political feasibility of 1.5 °C societal transformations: the role of social justice. Current Opinion in Environmental Sustainability, 31: 1-9. DOI: 10.1016/j.cosust.2017.11.002
  49. Peters G.P., Andrew R.M., Canadell J.G. et al. (2020). Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change, 10: 3-6. DOI: 10.1038/s41558-019-0659-6
  50. Roberts C., Geels F.W., Lockwood M., Newell P., Schmitz H., Turnheim B., Jordan A. (2018). The politics of accelerating low-carbon transitions: Towards a new research agenda. Energy Research & Social Science, 44: 304-311. DOI: 10.1016/j.erss.2018.06.001
  51. Rosenbloom D., Berton H., Meadowcroft J. (2016). Framing the sun: A discursive approach to understanding multi-dimensional interactions within socio-technical transitions through the case of solar electricity in Ontario, Canada. Research Policy, 45(6): 1275-1290. DOI: 10.1016/j.respol.2016.03.012
  52. Id., Rinscheid A. (2020). Deliberate decline: An emerging frontier for the study and practice of decarbonization. WIREs Climate Change, 11: e669. DOI: 10.1002/wcc.669
  53. Santer B.D., Bonfils C.J., Fu Q., Fyfe J.C., Hegerl G.C., Mears C., Zou C.Z. (2019). Celebrating the anniversary of three key events in climate change science. Nature Climate Change, 9(3): 180-182. DOI: 10.1038/s41558-019-0424-x
  54. Seto K.C., Davis S.J., Mitchell R.B., Stokes E.C., Unruh G., Ürge-Vorsatz (2016). Carbon lock-in: types, causes, and policy implications. Annual Review of Environment and Resources, 41: 425-452. DOI: 10.1146/annurev-environ-110615-085934
  55. Skjærseth J.B., Andresen S., Bang G., Heggelund G.M. (2021). The Paris agreement and key actors’ domestic climate policy mixes: comparative patterns. International Environmental Agreements, 21: 59-73. DOI: 10.1007/s10784-021-09531-w
  56. Smith A., Stirling A., Berkhout F. (2005). The governance of sustainable socio-technical transitions. Research Policy, 34: 1491-1510. DOI: 10.1080/096922998347426
  57. Smith C.J. et al. (2019). Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nature Communications, 10: 101. DOI: 10.1038/s41467-018-07999-w
  58. Sonnino R., Marsden T., Moragues-Faus A. (2016). Relationalities and convergences in food security narratives: towards a place-based approach. Transactions of the Institute of British Geographers, 41(4): 477-489. DOI: 10.1111/tran.12137
  59. Sovacool B.K., Hess D.J., Cantoni R. (2021). Energy transitions from the cradle to the grave: A meta-theoretical framework integrating responsible innovation, social practices, and energy justice. Energy Research & Social Science, 75: 102027. DOI: 10.1016/j.erss.2021.102027
  60. Strambach S., Pflitsch G. (2020). Transition topology: Capturing institutional dynamics in regional development paths to sustainability. Research Policy, 49(7): 104006. DOI: 10.1016/j.respol.2020.104006
  61. Supran G. (2021). Fueling their own climate narrative. Science, 374(6568): 702. DOI: 10.1126/science.abm3434
  62. Turnheim B., Geels F.W. (2012). Regime destabilisation as the flipside of energy transitions: Lessons from the history of the British coal industry (1913-1997). Energy Policy, 50: 35-49. DOI: 10.1016/j.enpol.2012.04.060
  63. UNEP – United Nations Environment Programme (2021). The Emissions Gap Report 2021. Nairobi: UNEP.
  64. Victoria M., Zhu K., Brown T., Andresen G.B., Greiner M. (2020). Early decarbonisation of the European energy system pays off. Nature Communications, 11: 6223. DOI: 10.1038/s41467-020-20015-4
  65. Xu C., Kohler T.A., Lenton T.M., Svenning J.-C., Scheffer M. (2020). Future of the human climate niche. Proceedings of the National Academies of Sciences - PNAS, 117: 11350-11355. DOI: 10.1073/pnas.1910114117
  66. Zhang Y., Held I., Fueglistaler S. (2021). Projections of tropical heat stress constrained by atmospheric dynamics. Nature Geoscience, 14: 133-137. DOI: 10.1038/s41561-021-00695-3


Caricamento metriche ...