Skip to main navigation menu Skip to main content Skip to site footer

Regular Articles

Early View

The Life Cycle Assessment: the basis for the digital and environmental transition of the agri-food sector

DOI
https://doi.org/10.3280/ecag2024oa17579
Submitted
marzo 29, 2024
Published
2024-12-18

Abstract

Promoting a sustainable economy through the digital and ecological transition of companies is one of the challenges of our century. By improving processes along the agri-food supply chains and enhancing the data generated in every single area of the value chain, digital promises to reduce the ecological footprint of the agricultural sector. Thus, the aim of the research was to estimate the environmental impacts and the social cost of pollution of different agricultural systems to identify the weak point in the cultivation phase and propose more sustainable lines of intervention and alternatives in a green transition perspective. The study was carried out in Southern Italy and 46 cropping systems were analyzed and compared using the Life Cycle Methodology (LCA). Results showed that to date no farmers interviewed has adopted digital technologies. The comparison between cultivation systems highlighted the greater sustainability of those organic. Among the different systems, some by their nature cOULD be considered more sustainable than others (as olive and hazelnut systems) because linked to a cultivation characterized by a low use of resources and inputs. On the contrary, others presented greater impacts due to the use of considerable quantities of materials, above all support and covering structures (as in table grapes systems) or plastic containers (as in strawberry systems). In the systems that didn’t use many materials, the disaggregation of the impacts by agricultural operations showed that the greatest impacts were linked to the emissions of the fuels, especially during the harvesting phase, and to fertilization and disease control. Hence the need to spread the use of the LCA methodology to estimate impacts in agriculture, increase organic cultivation and intervene with modern digital and precision agriculture technologies to consume fewer resources, reduce waste, and improve the quality of life.

References

  1. Aa.V.v. (2023). Osservatorio Smart Agrifood 2023: Agricoltura 4.0 in crescita. -- Available online: www.zerounoweb.it/trends/dinamiche-di-mercato/osservatoriosmart-agrifood-2023-agricoltura-4-0-in-crescita/ (accessed on 01/03/2024).
  2. Abbate, S., Centobelli, P., & Cerchione, R. (2023). The digital and sustainable transition of the agri-food sector. Technological Forecasting & Social Change, 187, 122222. doi: 10.1016/j.techfore.2022.122222.
  3. Bhakta, I., Phadikar, S., & Majumder, K. (2019). State-of-the-art technologies in precision agriculture: a systematic review. Journal of the Science of Food and Agriculture, 99, 4878-4888. doi: 10.1002/jsfa.9693.
  4. Bouwman, A. E. (1995). Compilation of a Global Inventory of Emissions of Nitrous Oxide. Ph.D. Thesis, University of Wageningen, Netherlands.
  5. Brentrup, F., Küsters, J., Kuhlmann, H., & Lammel, J. (2001). Application of the life cycle assessment methodology to agricultural production: An example of sugar beet production with different forms of nitrogen fertilizers. European Journal of Agronomy, 14, 221-233. doi: 10.1016/S1161-0301(00)00098-8.
  6. Brentrup, F., Küsters, J., Kuhlmann, H., & Lammel, J. (2004). Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy, 20, 247-264. doi: 10.1016/S1161-0301(03)00024-8.
  7. Brentrup, F., Küsters, J., Lammel, J., & Kuhlmamm, H. (2000). Methods to estimate on field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment, 5, 349-357. doi: 10.1065/Ica2000.08.030.
  8. Brunori, G. (2022). Agriculture and rural areas facing the “twin transition”: principles for a sustainable rural digitalization. Italian Review of Agricultural Economics, 77(3), 3-14. doi: 10.36253/rea-13983.
  9. Cerutti, A. K., Bruun, S., Beccaro, G. L., & Bounous, G. (2011). A review of studies applying environmental impact assessment methods on fruit production systems. Journal of Environmental Management, 92, 2277-2286. doi: 10.1016/j.jenvman.2011.04.018.
  10. Coppola, G., Costantini, M., Fusi, A., Ruiz-Garcia, L., & Bacenetti, J. (2022). Comparative life cycle assessment of conventional and organic hazelnuts production systems in Central Italy. Science of The Total Environment, 826, 154107. doi: 10.1016/j.scitotenv.2022.154107.
  11. De Backer, E., Aertsens, J., Vergucht, S., & Steurbaut, W. (2009). Assessing the ecological soundness of organic and conventional agriculture by means of life cycle assessment (LCA): A case study of leek production. British Food Journal, 10, 1028-1061. doi: 10.1108/00070700910992916.
  12. de Bruyn, S., Bijleveld, M., de Graaff, L., Schep, E., Schroten, A., Vergeer, R., & Ahdour, S. (2018). Environmental Prices Handbook, EU28 version; Publication Code: 18.7N54.125; CE Delft: Delft, The Netherlands. -- Available online: https://cedelft.eu/publications/environmental-prices-handbook-eu28-version/ (accessed on 10/12/2023).
  13. EN ISO 14040, 2006. Environmental Management, Life Cycle Assessment - Principles and Framework. International Organization for Standardization (ISO): Geneva, Switzerland.
  14. EN ISO 14044, 2006. Environmental Management, Life Cycle Assessment - Requirements and Guidelines. International Organization for Standardization (ISO): Geneva, Switzerland.
  15. European Commission, 2020. COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS A Farm to Fork Strategy for a fair, healthy and environmentally friendly food system. -- Available online https://eur-lex.europa.eu/resource.html?uri=cellar:ea0f9f73-9ab2-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (Accessed on 10/01/2024).
  16. Galanakis, C. M., Rizou, M., Aldawoud, T. M. S., Ucak, I., & Rowan, N.J. (2021). Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends in Food Science & Technology, 110, 193-200. doi: 10.1016/j.tifs.2021.02.002.
  17. Guyomard, H., Détang-Dessendre, C., Dupraz, P., Delaby, L., Huyghe, C., Peyraud, J. L., Reboud, X., & Sirami, C. (2023). How the Green Architecture of the 2023-2027 Common Agricultural Policy could have been greener. Ambio, 52, 1327-1338. doi: 10.1007/s13280-023-01861-0.
  18. Haas, G., Wetterich, F., & Geier, U. (2000). Life cycle assessment framework in agriculture on the farm level. The International Journal of Life Cycle Assessment, 5, 345-348. doi: 10.1065/Ica2000.11.038.
  19. Hauschild, M. Z. (2000). Estimating pesticide emissions for LCA of agricultural products. In B. P. Weidema, & M. J. G., Meeusen (Eds.), Agricultural Data for Life Cycle Assessments; LCA Net Food: The Hague, The Netherlands, Volume 2, pp. 64-79.
  20. IPCC: Intergovernmental Panel on Climate Change (2006). Guidelines for National Greenhouse Gas Inventories, vol. 11. Agriculture, forestry and other land use, USA. -- Available online: www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter11.pdf (accessed on 20/09/2023).
  21. Leone, D., Schiavone, F., Appio, F. P., & Chiao, B. (2021). How does artificial intelligence enable and enhance value co-creation in industrial markets? An exploratory case study in the healthcare ecosystem. Journal of Business Research, 129, 849-859. doi: 10.1016/j.jbusres.2020.11.008.
  22. Lezoche, M., Hernandez, J. E., Alemany Díaz, M. del M.E., Panetto, H., & Kacprzyk, J. (2020). Agri-food 4.0: a survey of the supply chains and technologies for the future agriculture. Computers in Industry, 117, 103187. doi: 10.1016/j.compind.2020.103187.
  23. Maffia, A., Palese, A. M., Pergola, M., Altieri, G., & Celano, G. (2022). The Olive-Oil Chain of Salerno Province (Southern Italy): A Life Cycle Sustainability Framework. Horticulturae, 8, 1054. doi: 10.3390/horticulturae8111054.
  24. Maffia, M., Pergola, M., Palese, A. M., & Celano, G. (2020). Environmental impact assessment of organic vs. integrated olive-oil systems in Mediterranean context. Agronomy, 10, 416. doi: 10.3390/agronomy10030416.
  25. Manna, P., Bonfante, A., Colandrea, M., Di Vaio, C., Langella, G., Marotta, L., Mileti, F.A., Minieri, L., Terribile, F., Vingiani, S., & Basile, A. (2020). A geospatial decision support system to assist olive growing at the landscape scale. Computers and Electronics in Agriculture, 168, 105143. doi: 10.1016/j.compag.2019.105143.
  26. Ministero delle politiche, Agricole Alimentari e Forestali, Gruppo difesa integrata. Decree of Ministry of Agricultural, Food and Forestry Policies, No. 2722, 17/04/2008 [Internet]. Roma: Istituto Superiore per la Protezione e la Ricerca Ambientale. -- Available online: https://indicatori-pan-fitosanitari.isprambiente.it/sites/indicatori-pan-fitosanitari.isprambiente.it/files/pdf/LINEE%20GUIDA%20PRODUZIONE%20INTEGRATA_DIFESA%20FITOSANITARIA%20CONTROLLO%20INFESTANTI.pdf.
  27. Moreno, J. C., Berenguel, M., Donaire, J. G., Rodríguez, F., Sánchez-Molina, J. A., Guzmán, J. L., & Giagnocavo, C. L. (2024). A pending task for the digitalisation of agriculture: A general framework for technologies classification in agriculture. Agricultural Systems, 213, 103794. doi: 10.1016/j.agsy.2023.103794.
  28. Nemecek, T., Roesch, A., Bystricky, M., Jeanneret, P., Lansche, J., Stüssi, M., & Gaillard, G. (2024). Swiss Agricultural Life Cycle Assessment: A method to assess the emissions and environmental impacts of agricultural systems and products. The International Journal of Life Cycle Assessment, 29(3), 433-455. doi: 10.1007/s11367-023-02255-w.
  29. Patel, B., & Bhatia, J. (2024). A comprehensive review of internet of things and cutting-edge technologies empowering smart farming. Current science, 126, 2, 25.
  30. Pergola, M., Favia, M., Perretti, B., Martemucci, S., Palese, A. M., & Celano, G. (2011). Analisi energetica, economica ed ambientale dei sistemi agricoli: esempio di applicazione al sistema uva da tavola. L’Informatore Agrario, 39, 62-66.
  31. Pergola, M., Palese, A. M., Persiani, A., & Celano, G. (2014) Analisi di sostenibilità ed efficienza ambientale di sistemi viticoli dell’Area Cilento, Alburni e Vallo di Diano. In G. Celano, A. M. Palese, & A. Piccolo (Eds.), Tecnologie avanzate in viticoltura ed enologia per un vino innovativo ottenuto dal vitigno Aglianicone. ATS Viticoltori De Conciliis-Prignano Cilento (SA), Chapter VIII, pp. 125-136.
  32. Pergola, M., Persiani, A., Pastore, V., Palese, A. M., Arous, A., & Celano, G. (2017). A comprehensive Life Cycle Assessment (LCA) of three apricot orchard systems located in Metapontino area (Southern Italy). Journal of cleaner production, 142, 4, 20: 4059-4071. doi: 10.1016/j.jclepro.2016.10.030.
  33. Pergola, M., Palese, A. M., Persiani, A., De Francesco, P., Cirillo, C., Giacca, G. M., Maffia, A., & Celano, G. (2021). Mediterranean cropping systems: the importance of their economic and environmental sustainability. Advances in environmental and engineering research, 2, 4. doi: 10.21926/aeer.2104036.
  34. Pergola, M., Persiani, A., D’Ammaro, D., Pastore, V., D’Adamo, C., Palese, A. M., & Celano, G. (2022). Environmental and Energy Analysis of two orchard systems: a case study in Mediterranean Environment. Agronomy, 12, 2556. doi: 10.3390/agronomy12102556.
  35. Pergola, M., Maffia, A., Carlucci, G., Persiani, A., Palese, A. M., Zaccardelli, M., Altieri, G., & Celano, G. (2023). An environmental and economic analysis of strawberry production in Southern Italy. Agriculture, 13, 1705. doi: 10.3390/agriculture13091705.
  36. Pergola, M., Maffia, A., Picone, A., Palese, A. M., Altieri, G., Celano, G. (2024). Hazelnut Cultivation in the Campania Region: Environmental Sustainability of the Recovery of Pruning Residues and Shells through the Life Cycle Assessment Methodology. Sustainability, 16, 7533. doi: 10.3390/su16177533.
  37. RIVM, CML, PRé Consultants and the Radboud University Nijmegen on behalf of the Dutch Ministry of Infrastructure and the Environment. ReCiPe. -- Available online: www.rivm.nl/en/life-cycle-assessment-lca/downloads (accessed on 1 June 2023).
  38. Seda, M., Assumpeió, A., & Muñoz, P. (2011). Analysing the influence of functional unit in agricultural LCA. LCA FOOD 2010. VII international conference on life cycle assessment in the agri-food sector. In Notarnicola, B. 7th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2010), 22-24 September 2010, Bari (Italy). The International Journal of Life Cycle Assessment, 16, 102-105.
  39. Shepherd, M., Turner, J. A., Small, B., & Wheeler, D. (2020). Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. Journal of the Science of Food and Agriculture, 100, 5083-5092. doi: 10.1002/jsfa.9346.
  40. Terribile, F., Bonfante, A., D’Antonio, A., De Mascellis, R., De Michele, C., Langella, G., Manna, P., Mileti, F. A., Vingiani, S., & Basile, A. (2017). A geospatial decision support system for supporting quality viticulture at the landscape scale. Computers and Electronics in Agriculture, 140, 88-102. doi: 10.1016/j.compag.2017.05.028.
  41. Warner, K. S. R., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: an ongoing process of strategic renewal. Long Range Planning, 52, 326-349. doi: 10.1016/j.lrp.2018.12.001.
  42. Wu, F., & Ma, J. (2020). Evolution dynamics of agricultural internet of things technology promotion and adoption in China. Discrete Dynamics in Nature and Society, 1854193. doi: 10.1155/2020/1854193.

Metrics

Metrics Loading ...