Skip to main navigation menu Skip to main content Skip to site footer

Bioeconomics and its Derivations: Ecological Economics and Political Ecology

Vol. 25 No. 1 (2023)

Crop waste management proposal in rice systems at the department of Cordoba, Colombia

DOI
https://doi.org/10.3280/ecag2023oa14667
Submitted
settembre 24, 2022
Published
2023-05-05

Abstract

The claim for food increases with the waste caused by its production. Rice is appetized but the agro-industrial residue, such as straw and husk, becomes a problem when they’re not properly managed. However, renewable source demands grew, indeed, the chains of rice residue as cellulose, lignin, hemicellulose, carbon, and silica could be transformed into: fuel, power generation, gas production, paper manufactory, and fertilizer for the production of fungi and building material.
The industrial implementation of rice residue management worldwide has a lack. In this case, it was observed more closely the rice cultivation in a local region of Colombia. The aim of this research was to present the current market, challenges and the proposal of a proper management residue on a circular economy incorporated into Córdoba department rice market.
The study was conducted through scientific and comprehensive insights on rice crop waste management options. The selection criteria of the articles were rice production, major components of rice paddy, straw, and husks, and waste disposal in rice systems. Farmers, researchers, federations, administration, and management, need to work on, improving the nutrients of the soil, the quality of the crop, and the management of the residue, the one that remains in the mills and the one that remains in the fields. Finally, in all processes, the required investment to obtain a product that meets current market requirements on renewable fuels or raw materials.

References

  1. Ahmed, T., Ahmad, B., & Ahmad, W. (2015). Why do farmers burn rice residue? Examining farmers’ choices in Punjab, Pakistan. Land Use Policy, 47, 448-458. doi: 10.1016/j.landusepol.2015.05.004.
  2. Ai, N., Chen, L., & Fu, Y. (2022). A novel analysis on pyrolysis and gasification process of rice straw feedstock. Sustainable Energy Technologies and Assessments, 51, 101866. doi: 10.1016/j.seta.2021.101866.
  3. Bahrami, A., Pech-Canul, M., Soltani, N., & Guti, C. (2017). Tailoring microstructure and properties of bilayer-graded Al/B4C/MgAl2O4 composites by singlestage pressureless infiltration. J. Alloy. Compd., 694, 408-418. doi: 10.1016/j.jallcom.2016.09.284.
  4. Bakar, R., Yahya, R., & Gan, S. (2016). Production of high purity amorphous silica from rice husk. Procedia Chem., 19, 189-195. doi: 10.1016/j.proche.2016.03.092.
  5. Bánfi, R., Pohner, Z., Kovács, J., Luzics, S., Nagy, A., Dudás, M., … Vajna, B. (2015). Characterisation of the large-scale production process of oyster mushroom (Pleurotus ostreatus) with the analysis of succession and spatial heterogeneity of lignocellulolytic enzyme activities. Fungal Biology, 119(12), 1354-1363. doi: 10.1016/j.funbio.2015.10.003.
  6. Bi, Y., Cai, S., Wang, Y., Zhao, X., Wang, S., Xing, G., & Zhu, Z. (2020). Structural and microbial evidence for different soil carbon sequestration after four-year successive biochar application in two different paddy soils. Chemosphere, 254, 126881. doi: 10.1016/j.chemosphere.2020.126881.
  7. Bimbraw, A. (2019). Generation and impact of crop residue and its management. Curr Agric Res J., 7(3), 304. doi: 10.12944/CARJ.7.3.05.
  8. Bonifacio, A., & Archbold, P. (2022). The effect of calcination conditions on oat husk ash pozzolanic activity. Materials Today: Proceedings, 65, Part 2, pp. 622-628. doi: 10.1016/j.atmosenv.2014.07.062.
  9. Cao, Z., Niu, J., Gu, Y., Zhang, R., Liu, Y., & Luo, L. (2020). Catalytic pyrolysis of rice straw: screening of various metal salts, metal basic oxide, acidic metal oxide and zeolite catalyst on products yield and characterization. J. Clean. Prod., 269, 122079. doi: 10.1016/j.jclepro.2020.122079.
  10. Cerutti, A.K., Bruun, S., Beccaro, G.L., & Bounous, G. (2011). A review of studies applying environmental impact assessment methods on fruit production systems. Journal of Environmental Management, 92, 2277-2286. doi: 10.1016/j.jenvman.2011.0.
  11. Chi, N.H., & Oanh, N.K. (2021). Photochemical smog modeling of PM2.5 for assessment of associated health impacts in crowded urban area of Southeast Asia. Environ. Technol. Innovat, 21, 101241. doi: 10.1016/j.eti.2020.101241.
  12. Chi, X.-C., Yang, Y.-S., Wang, Y.-H., Gao, J.-C., Sui, N., Yang, H.-G., & al., e. (2015). Studying of photoluminescence characteristics of CdTe/ZnS QDs manipulated by TiO2 inverse opal photonic crystals. Opt Mater, 46, 350-354. doi: 10.1016/j.optmat.2015.04.043.
  13. Colombian Ministry of Agriculture and Rural Development, O.A. (2005). La cadena del arroz en Colombia, una mirada global de su estructura y dinámica. -- doi: http://bibliotecadigital.agronet.gov.co/bitstream/11348/6376/1/2005112141728_caracterizacion_arroz.pdf.
  14. Colombian Ministry of Environment and Housing (2000). Guía ambiental del arroz. Repositorio Institucional Agrosavia. Corporación colombiana de investigación agropecuaria. -- doi: http://hdl.handle.net/20.500.12324/18913.
  15. Conde, F., Ayala, J., Afonso, A., & González, V. (2005). Emissions of polycyclic aromatic hydrocarbons from the combustion of agricultural and sylvicultural debris. Atmos. Environ., 39, 6654-6663. doi: 10.1016/j.atmosenv.2005.07.043.
  16. D. Sietske Boschma, I.K. (2013, June). Switchgrass (Panicum virgatum L.). A perennial biomass grass for efficient production of feedstock for the biobased economy. NL Agency Minist. Econ. Aff., 6-30. -- Retrieved from https://english.rvo.nl/sites/default/files/2013/12/Switchgrass%20report%20AgNL%20June%202013_0.pdf.
  17. DANE (2022). DEPARTAMENTO ADMINISTRATIVO NACIONAL DE ESTADÍSTICA – DANE. -- Retrieved December 5, 2022, from Encuesta nacional de arroz mecanizado (ENAM) Históricos: -- www.dane.gov.co/index.php/estadisticaspor-tema/agropecuario/encuesta-de-arroz-mecanizado/encuesta-nacional-de-arrozmecanizado-enam-historicos.
  18. Danish, M., Naqvi, M., Farooq, U., & Naqvi, S. (2015). Characterization of South Asian agricultural residues for potential utilization in future ‘energy mix’. Energy Proc., 75, 2974-2980. doi: 10.1016/j.egypro.2015.07.604.
  19. Darmawan, A., Biddinika, M.K., Huda, M., Tokimatsu, K., & Aziz, M. (2018). Toward sustainable agricultural: integrated system of rice processing and electricity generation. Chem Eng Trans., 70, 1669-1674. doi: 10.3303/CET1870279.
  20. Dejkriengkraikul, P., Semmarath, W., & Mapoung, S. (2019). Anthocyanins and Proanthocyanidins in Natural Pigmented Rice and Their Bioactivities. (I. Rao, D. Mans, & L. Rao, Eds.) Phytochemicals in Human Health. IntechOpen. doi: 10.5772/intechopen.86962.
  21. Downing, A., Kumar, M., Andersson, A., & et al. (2022). Unlocking the unsustainable rice-wheat system of Indian Punjab: Assessing alternatives to cropresidue burning from a systems perspective. Ecological Economics, 195. doi: 10.1016/j.ecolecon.2022.107364.
  22. FAO (2022). Organización de las Naciones Unidas para la Alimentación y la Agricultura. -- www.fao.org/3/I9243EN/i9243en.pdf.
  23. FEDEARROZ (2016). IV Censo Nacional Arrocero.
  24. G., G., Tabasso, S., Cravotto, G., & van Ree, T. (2020). Burning Biomass: Environmental Impact on the Soil. In: Biomass Burning in Sub-Saharan Africa. Springer, pp. 15-30. doi: 10.1007/978-94-007-0808-2_2.
  25. Ghosh, B.N., Meena, V.S., Alam, N.M., Dogra, P., Bhattacharyya, R., Sharma, N.K., & Mishra, P.K. (2016). Impact of conservation practices on soil aggregation and the carbon management index after seven years of maize-wheat cropping system in the Indian Himalayas. Agric Ecosyst Environ, 216, 247-257. doi: 10.1016/j. agee.2015.09.038.
  26. Gómez, L., Manrique, D., Moreno, H., L, S., & Torres, C. (junio 2021). Intensidad de emisiones por unidad de producto para la producción de arroz en Colombia. Grupo de Cambio Global – Subdirección de estudios Ambientales (SEA) – IDEAM. -- doi: https://biocarbono.org/wp-content/uploads/2021/09/04-intensidademisiones-unidad-producto-arroz-colombia.pdf.
  27. Gómez, L., Manrique, D., Moreno, H., L, S., & Torres, C. (junio 2021). Intensidad de emisiones por unidad de producto para la producción de arroz en Colombia. Grupo de Cambio Global – Subdirección de estudios Ambientales (SEA) – IDEAM.
  28. Goodman, B.A. (2020). Utilization of waste straw and husks from rice production: A review. Journal of Bioresources and Bioproducts, 5(3), 143-162. doi: 10.1016/j.jobab.2020.07.001.
  29. Guan, Z., Yin, H., Han, W., Zhang, T., Wu, Y., & Chen, K. (2021). Filtration technology of poultry washing wastewater based on maize stover filter media. Trans. Chin. Soc. Agric. Eng., 37(13), 216-223. -- doi: https://caod.oriprobe.com/articles/61804999/Filtration_technology_of_poultry_washing_wastewate.htm.
  30. Gupta, N. (2019). Paddy residue burning in Punjab understanding farmers’ perspectives and rural air pollution. Ceew. -- www.ceew.in/sites/default/files/CEEW-Paddy-Residue-Burning-in-Punjab-Farmers-Perspectives-Issue-Brief-29Mar19.pdf.
  31. Himmel, M., Ding, S., Johnson, D., Adney, W., Nimlos, M., Brady, J., & Foust, T. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804-807. doi: 10.1126/science.1137016.
  32. Hu, S., Xiang, J., Sun, L., Xu, M., Qiu, J., & Fu, P. (2008). Characterization of char from rapid pyrolysis of rice husk. Fuel Processing Technology, 89, 1096-1105. doi: 10.1016/j.fuproc.2008.05.001.
  33. Ibrahim, M., El-Zawawy, W., Jüttke, Y., Koschella, A., & Heinze, T. (2013). Cellulose and microcrystalline cellulose from rice straw and banana plant waste: Preparation and characterization. doi: 10.1007/s10570-013-9992-5.
  34. IPCC, I. P. (2006). Guidelines for Greenhouse Gas Inventories. Prepared by the National. Prepared by the National Greenhouse Gas Inventories Programme. (H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, & J. IGES, Eds.) -- doi: www.ijat-aatsea.com/pdf/v14_n5_2018_%20September/15_IJAT_14(5)_2018_Zikriyani,%20H..pdf.
  35. J. Chen, e. a. (2017). A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci. Total Environ., 579, 1000-1034. doi: 10.1016/j.scitotenv.2016.11.025.
  36. Janbuala, S., & Wasanapiarnpong, T. (2015). Effect of Rice Husk and Rice Husk Ash on Properties of Lightweight Clay Bricks. Key Engineering Materials, 659, 74-79. doi: 10.4028/www.scientific.net/KEM.659.74.
  37. Jittin, V., Bahurudeen, A., & Ajinkya., S. (2020). Utilisation of rice husk ash for cleaner production of different construction products. Journal of Cleaner Production, 263, 121578. doi: 10.1016/j.jclepro.2020.121578.
  38. Karam, D.S., Nagabovanalli, P., Rajoo, K.S., Ishak, C.F., Abdu, A., Rosli, Z., … Zulperi, D. (2021). An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. Journal of the Saudi Society of Agricultural Sciences. doi: 10.1016/j.jssas.2021.07.005.
  39. Kaur, D., Bhardwaj, N., & Lohchab, R. (2017). Lohchab. Prospects of rice straw as a raw material for paper making. Waste Manag, 60, 127-139. doi: 10.1016/j.wasman.2016.08.001.
  40. Kwong, P., Christopher, Y., Chao, J., Wang, C., & Cheung, G. (2007). Co-combustion performance of coal with rice husks and bamboo. Atmospheric Environment, (41), 7462-7472. doi: 10.1016/j.atmosenv.2007.05.040.
  41. Leiva-Candia, D., Pinzi, S., Redel-Macías, M., Koutinas, A., Webb, C., & Dorado, M. (2014). The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel, 123, 33-42. doi: 10.1016/j.fuel.2014.01.054.
  42. Luo, Y., Li, Z., Li, X., Liu, X., Fan, J., & Clark, J. (2019). The production of furfural directly from hemicellulose in lignocellulosic biomass: a review. Catal. Today, 319, 14-24. doi: 10.1016/j.cattod.2018.06.042.
  43. Ma, Y., Gao, Z., Wang, Q., & Liu, Y. (2018). Biodiesels from microbial oils: opportunity and challenges. Bioresour. Technol., 263, 631-641. doi: 10.1016/j.biortech.2018.05.028.
  44. Malik, K., S.A., Kumari, N., Mehta, S., & Kumar, A. (2020). Bioconversion of paddy straw for bio-ethanol production. J pharmacogn phytochem., 9(3), 1091-1093. -- doi: www.phytojournal.com/archives/2020/vol9issue3/PartR/9-3-104-742.pdf.
  45. Mansaray, K., & Ghaly, A. (1998). Physical and thermochemical properties of rice husk. Energy Sources Part A: Recovery Utilization and Environmental Effects, 19, 989-1004. doi: 10.1080/00908319708908904.
  46. Memon, S., Shaikh, M., & Akbar, H. (2011). Utilization of rice husk ash as viscosity modifying agent in self-compacting concrete. Constr. Build. Mater., 25(2), 1044-1048. doi: 10.1016/j.conbuildmat.2010.06.074.
  47. Memon, T.A., Harijan, K., Soomro, M.I., Meghwar, S., & Valasai, G.D. (2017). Potential of electricity generation from rice husk-a case study of rice mill. Sindh University Research Journal-SURJ (Science Series), 49(3), 495-498. doi: 10.26692/surj/2017.09.05.
  48. Mirmohamadsadeghi, S., & Karimi, K. (2020). Recovery of Silica from Rice Straw and Husk. Current Developments in Biotechnology and Bioengineering, 411-433. doi: 10.1016/B978-0-444-64321-6.00021-5.
  49. Mirmohamadsadeghi, S., & Karimi, K. (2020). Recovery of Silica from Rice Straw and Husk. Current Developments in Biotechnology and Bioengineering, 411-433.
  50. Mondal, S., Naik, S., Haris, A., Mishra, J., Mukherjee, J., Rao, K., & Bhatt, B. (2020). Effect of conservation tillage and rice-based cropping systems on soil aggregation characteristics and carbon dynamics in Eastern Indo-Gangetic Plain. Paddy Water Environ., 18(3), 573-586. doi: 10.1007/s10333-020-00802-x.
  51. Morales, R., Agudo, L., & J., E. (2021). Filtration technology of poultry washing wastewater based on maize stover filter media. Trans. Chin. Soc. Agric. Eng, 37(13), 216-223. -- Acesso em 5 de December de 2022, disponível em -- https://caod.oriprobe.com/articles/61804999/Filtration_technology_of_poultry_washing_wastewate.htm.
  52. Nair, D., Fraaij, A., Klaassen, A., & Kentgens, A. (2008). A structural investigation relating to the pozzolanic activity of rice husk ashes. Cement and Concrete Research, 38(6), 861-869. doi: 10.1016/j.cemconres.2007.10.004.
  53. Ndazi, B., Karlsson, S., Tesha, J., & Nyahumwa, C. (2007). Chemical and physical modifications of rice husks for use as composite panels. Composites Part A, 38, 925-935. doi: 10.1016/j.compositesa.2006.07.004.
  54. Nguyen-Sy, T., Cheng, W., Kimani, S., Shiono, H., Sugawara, R., Tawaraya, K.,… Kumagai, K. (2019). Stable carbon isotope ratios of water-extractable organic carbon affected by application of rice straw and rice straw compost during a longterm rice experiment in Yamagata, Japan. Soil Sci. Plant Nutr., 66, 125-132.
  55. Pandey, A., Soccol, C., Nigam, P., Soccol, V., Vandenberghe, L., & Mohan, R. (2000). Biotechnological potential of agroindustrial residues. II: cassava bagasse. Bioresour Technol., 74(1), 81-87. doi: 10.1016/S0960-8524(99)00143-1.
  56. Pastorello, C., Caserini, S., Galante, S., Dilara, P., & Galletti, F. (2011). Importance of activity data for improving the residential wood combustion emission inventory at regional level. Atmos. Environ., 45, 2869-2876. doi: 10.1016/j.atmosenv.2011.02.070.
  57. Peng, F., Peng, P., Xu, F., & Sun, R. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv., 30, 879-903. doi: 10.1016/j.biotechadv.2012.01.018.
  58. Pham, C.-T., Ly, B.-T., Nghiem, T.-D., T.H.-P. Pham, N.-T. M., Tang, N., Hayakawa, K., & Toriba, A. (2021). Emission factors of selected air pollutants from rice straw burning in Hanoi Vietnam Air Q. Atmos. Health. doi: 10.1007/s11869-021-01050-6.
  59. Smith, R.G. and Kamwanja, G.A. (1986). The use of rice husk for making a cementitious material. Proc. Joint Symposium on the Use of Vegetable Plants and their Fibers as Building Material, Baghdad.
  60. Raheem, A., Oriola, K., Kareem, M., & Abdulwah, R. (2021). Investigation on thermal properties of rice husk ash-blended palm kernel shell concrete. Environmental Challenges, 5. doi: 10.1016/j.envc.2021.100284.
  61. Raheem, A., Sajid, M., Iqbal, M. S., Bilal, M., & Rafiq, F. J. (2019). Microbial inhabitants of agricultural land have potential to promote plant growth but they are liable to the traditional practice of wheat (T. aestivum L) straw burning. Biocatal Agric Biotechnol., 18, 101060. doi: 10.1016/j.bcab.2019.101060.
  62. Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P., … Boerjan, W. (2004). Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev., 3, 29-60.
  63. Resolution number 532 of 2005 (2005). MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL. “Por la cual se establecen requisitos, términos, condiciones y obligaciones, para las quemas abiertas controladas en áreas rurales en actividades agrícolas y mineras”. -- doi: www.minvivienda.gov.co/normativa/resolucion-0532-2005.
  64. Ribó, M., Albiach, R., Pomares, F., & Canet., R. (2017). Alternativas de gestión de la paja de arroz en la Albufera de Valencia. Vida rural, (430), 56-60. -- doi: https://dialnet.unirioja.es/servlet/articulo?codigo=5981866.
  65. Sanchis Jiménez, E., López Jiménez, P., & Calvet Sanz, S. (2014). Emisiones De Gases En El Cultivo Del Arroz: Efecto De La Gestión De La Paja. Universidad Politécnica de Valencia, Escuela Tecnica Superior de Ingenieros de Caminos, Canales y Puertos.
  66. Sanchis, E., Ferrer, M., Calvet, S., Coscollà, C., & Yusà, V. (2014). Gaseous and particulate emission profiles during controlled rice straw burning. Atmospheric Environment, 98, 25-31. doi: 10.1016/j.atmosenv.2014.07.062.
  67. Shyamsundar, P., Springer, N., Tallis, H., & et al. (2019). Fields on fire: alternatives to crop residue burning in India Science. Science, 365(6453), 536-538.
  68. Singh, B. (2018). Rice husk ash. Waste and Supplementary Cementitious Materials in Concrete Characterisation, Properties, and Applications. Woodhead Publishing Series in Civil and Structural Engineering, 417-460.
  69. Singh, G., & Arya, S. (2021). A review on management of rice straw by use of cleaner technologies: Abundant opportunities and expectations for Indian farming. J. Clean. Prod., 291, 125278. doi: 10.1016/j.jclepro.2020.125278.
  70. Singh, R., Yadav, D. B., Ravisankar, N., Yadav, A., & Singh, H. (2020). Crop residue management in rice-wheat cropping system for resource conservation and environmental protection in north-western India. Environ Dev Sustai., 22(5), 3871-3896. doi: 10.1007/s10668-019-00370-z.
  71. Singh, S., & Sharma, S. (2021). Temporal changes in rhizosphere biological soil quality indicators of wheat in response to nitrogen and straw incorporation. Trop Ecol., 61, 328-344. doi: 10.1007/s42965-020-00092-8.
  72. Soltani, N., Bahrami, A., Pech-Canul, M., González, L., & Gurlo, A. (2017). Kinetics of silicon nitride formation on SiO2-derived rice husk ash using the chemical vapor infiltration method. Int. J. Chem. Kinet., 293-302. doi: 10.1002/kin.21075.
  73. Swain, M.R., Singh, A., & Sharma., A.K. (2019). Chapter 11 – Bioethanol Production From Rice – and Wheat Straw: An Overview. Bioethanol Production from Food Crops. Sustainable Sources, Interventions, and Challenges, 213-231. doi: 10.1016/B978-0-12-813766-6.00011-4.
  74. Thabah, W., Singh, A.K., & Bedi, R. (2021). Tensile properties of urea treated rice straw reinforced recycled polyethylene terephthalate composite materials. Materials Today: Proceedings. doi: 10.1016/j.matpr.2021.11.464.
  75. Torigoe, K., Hasegawa, S., Numata, O., Yazaki, S., Matsumaga, M., Boku, N., … Ino, H. (2000). Influence of emission from rice straw burning on bronchial asthma in children. Pediatr. Int., 42, 143-150. doi: 10.1046/j.1442-200x.2000.01196.x.
  76. Velásquez Rojas, U., & Rico Ramírez, J. (1987). Empleo de la ceniza de cascara de arroz como puzolana en hormigones.
  77. Vinoth, S., Sivasamy, R., Sathiyanathan, K., Rajchakit, G., Hammachukiattikul, P., Vadivel, R., & et al. (2021). Dynamical analysis of a delayed food chain model with additive Allee effect. Adv Diff Equations, 1, 1-20. doi: 10.1186/s13662-021-03216-z.
  78. Wi, S., Choi, I., Kim, K., Kim, H., & Bae, H. (2013). Bioethanol production from rice straw by popping pretreatment. Biotechnol. Biofuels, 6, 166. -- doi: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/1754-6834-6-166.
  79. Wu, J., Li, Z., Wang, L., Liu, X., Tang, C., & Xu, J. (2020). A novel calcium-based magnetic biochar reduces the accumulation of as in grains of rice (Oryza sativa L.) in As-contaminated paddy soils. J. Hazard Mater., 394, 122507.
  80. Xiao, B., Sun, X.F., & Sun, A.R. (2001). Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability, 74(2), 307-319. doi: 10.1016/S0141-3910(01)00163-X.
  81. Yuan, Q., Hernández, M., Dumont, M., Rui, J., Scavino, A.F., & Conrad, R. (2018). Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter. Soil Biol. Biochem., 116, 99-109.
  82. Yusuf, R.U., Noor, Z.Z., Abba, A.H., Hassan, M.A., & Din, M.F. (2012). Methane emission by sectors: A comprehensive review of emission sources and mitigation methods. Renewable and Sustainable Energy Reviews, 16, 5059-5070.
  83. Zhang, Z., Li, G., Yuan, J., Sun, Q., Luo, Y., & Zhang, D. (2016). Effect of corn stalk for filtrating biogas slurry fermented from swine manure. Chin. J. Environ. Eng., 10(4), 1985-1992. -- doi: www.cjee.ac.cn/en/article/doi/10.12030/j.cjee.20160465?viewType=HTML.
  84. Zikriyani, H., Saskiawan, I., & Mangunwardoyo, W. (2018). Utilization of agricultural waste for cultivation of paddy straw mushrooms (Volvariella volvacea (bull.) singer 1951). Intl. J. Agric. Technol., 14, 805-814. -- doi: www.ijat-aatsea.com/pdf/v14_n5_2018_%20September/15_IJAT_14(5)_2018_Zikriyani,%20H.pdf.

Metrics

Metrics Loading ...

Most read articles by the same author(s)