Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Saggi

N. 121 (2022)

Una survey nazionale per valutare l’efficacia della comunicazione istituzionale nella gestione del Covid-19

DOI
https://doi.org/10.3280/mesa2022-121oa13858
Inviata
maggio 25, 2022
Pubblicato
2022-09-16

Abstract

La comunicazione istituzionale, nelle sue varie forme, è una leva centrale dell’azione di governo, della relazione tra istituzioni e cittadino. In questo contesto assumono valore strategico gli strumenti della comunicazione istituzionale.
Il livello di attenzione sulle dinamiche della comunicazione istituzionale, nel periodo Covid-19, evidenzia il cambiamento della realtà pubblica e l’apertura della medesima verso una nuova managerialità, intesa come processo di modernizzazione organizzativa, gestionale, culturale, informativa e informatica. Il contributo scientifico
intende valutare, nell’ambito di questo nuovo dibattito manageriale, le relazioni tra istituzioni e cittadino nel rapporto comunicazione istituzionale e Covid-19.

Riferimenti bibliografici

  1. Abraham T. (2009). Risk and outbreak communication: lessons from alternative paradigms. Bulletin of the World Health Organization, 87(8): 604-607. http://www.who.int/bulletin/volumes/87/8/08-058149.pdf.
  2. Anselmi L. (2013). Percorsi aziendali per le pubbliche amministrazioni. Torino: Giappichelli.
  3. Aylward R., Clements J., Olive J. (1997). The impact of immunization control activities on measles outbreaks in middle and low income countries. International Journal of Epidemiology, 26(3): 662-669. Doi: 10.1093/ije/26.3.662.
  4. Benton A., Dionne K. (2015). International Political Economy and the 2014 West African Ebola Outbreak. African Studies Review, 58(1): 223-236. DOI: 10.1017/asr.2015.11.
  5. Benvenuto M., Avram A., Sambati F. V., Avram M., Viola C. (2020). The Impact of Internet Usage and Knowledge-Intensive Activities on Households’ Healthcare Expenditures. International Journal of Environmental Research and Public Health, 17(12): 4470. DOI: 10.3390/ijerph17124470.
  6. Benvenuto M., Rosa A., Viola C. (2020). Analisi prospettica per il design di un nuovo dominio di pianificazione, programmazione e controllo sociotecnico nel settore della salute. Mecosan, 113: 259-269. DOI: 10.3280/MESA2020-113030.
  7. Benvenuto M., Sambati F.V., Viola C. (2019). The impact of internet usage on health-care expenditures and sustainability. 5th International Conference – ERAZ 2019 – Knowledge Based Sustainable Development, Budapest – Hungary, May 23, 2019, selected papers,pp. 95-107. Doi: 10.31410/ERAZ.S.P.2019.95.
  8. Bethlehem J. (2010). Selection Bias in Web Surveys. International Statistical Review, 78(2): 161-188. DOI: 10.1111/J.1751-5823.2010.00112.X.
  9. Carney M.T., Buchman T., Neville S., Thengampallil A., Silverman R. (2015). A community partnership to respond to an outbreak: A model that can be replicated for future events. Progress in Community Health Partnerships: Research, Education, and Action, 8(4): 531-540. Doi: 10.1353/cpr.2014.0065.
  10. Choi D.-H., Yoo W., Noh G.-Y., Park K. (2017). The impact of social media on risk perceptions during the MERS outbreak in South Korea. Computers in Human Behavior, 72: 422-431. DOI: 10.1016/j.chb.2017.03.004.
  11. Chou C.-P., Bentler P.M. (1995). Estimates and tests in structural equation modeling. In: Hoyle R.H. (Ed.). Structural equation modeling: Concepts, issues, and applications. London: Sage Publications, Inc., pp. 37-55.
  12. Corvi E. (2007). La comunicazione aziendale: obiettivi, tecniche, strumenti. Milano: Egea.
  13. Costantino C., Restivo V., Ventura G., D’Angelo C., Randazzo M., Casuccio N., Palermo M., Casuccio A., Vitale F. (2018). Increased Vaccination Coverage among Adolescents and Young Adults in the District of Palermo as a Result of a Public Health Strategy to Counteract an ‘Epidemic Panic.’ International Journal of Environmental Research and Public Health, 15(5): 1014. DOI: 10.3390/ijerph15051014.
  14. Couper M.P., Antoun C., Mavletova A. (2017). Mobile Web Surveys. In: Total Survey Error in Practice (pp. 133-154). New York: John Wiley & Sons, Ltd. Doi: 10.1002/9781119041702.CH7.
  15. Cowper A. (2020). Covid-19: Are we getting the communications right?. The BMJ, 368: 1-3. BMJ Publishing Group. Doi: 10.1136/bmj.m919.
  16. Crouse Quinn S. (2008). Crisis and emergency risk communication in a pandemic: a model for building capacity and resilience of minority communities. Health Promotion Practice, 9(4 Suppl): 18-25. DOI: 10.1177/1524839908324022.
  17. Cucciniello M., Fattore G., Longo F., Ricciuti E., Turrini A. (2018). Management pubblico (Vol. 1). Milano: Egea S.p.A., pp. 133-142.
  18. Ding H. (2009). Rhetorics of Alternative Media in an Emerging Epidemic: SARS, Censorship, and Extra-Institutional Risk Communication. Technical Communication Quarterly, 18(4): 327-350. DOI: 10.1080/10572250903149548.
  19. Dunleavy P., Hood C. (1994). From old public administration to new public management. Public Money and Management, 14(3): 9-16. DOI: 10.1080/09540969409387823.
  20. Gorla N., Somers T.M., Wong B. (2010). Organizational impact of system quality, information quality, and service quality. Journal of Strategic Information Systems, 19(3): 207-228. DOI: 10.1016/j.jsis.2010.05.001.
  21. Gravili G., Benvenuto M., Avram A., Viola C. (2018). The influence of the Digital Divide on Big Data generation within supply chain management. International Journal of Logistics Management, 29(2): 592-628. DOI: 10.1108/IJLM-06-2017-0175.
  22. Hall K., Wolf M. (2019). Whose crisis? Pandemic flu, ‘communication disasters’ and the struggle for hegemony. Health: An Interdisciplinary Journal for the Social Study of Health, Illness and Medicine, 1363459319886112. DOI: 10.1177/1363459319886112.
  23. Heckman J. (1990a). Selection Bias and Self-selection. Econometrics, 201-224. DOI: 10.1007/978-1-349-20570-7_29.
  24. Heckman J. (1990b). Varieties Of Selection Bias. The American Economic Review, 80(2): 313-318. -- https://www.jstor.org/stable/2006591%0A.
  25. Helms J.E., Henze K.T., Sass T.L., Mifsud V.A. (2006). Treating Cronbach’s Alpha Reliability Coefficients as Data in Counseling Research. The Counseling Psychologist, 34(5): 630-660. DOI: 10.1177/0011000006288308.
  26. Holland K., Blood R.W., Imison M., Chapman S., Fogarty A. (2012). Risk, expert uncertainty, and Australian news media: public and private faces of expert opinion during the 2009 swine flu pandemic. Journal of Risk Research, 15(6): 657-671. DOI: 10.1080/13669877.2011.652651.
  27. Jones S.C., Waters L., Holland O., Bevins J., Iverson D. (2010). Developing pandemic communication strategies: Preparation without panic. Journal of Business Research, 63(2): 126-132. DOI: 10.1016/j.jbusres.2009.02.009.
  28. Kendall M.G. (1960). Studies in the History of Probability and Statistics. Where Shall the History of Statistics Begin?. Biometrika, 47(3/4): 447. DOI: 10.2307/2333315.
  29. Kosec K., Wantchekon L. (2020). Can information improve rural governance and service delivery?. World Development, 125: 104376. DOI: 10.1016/j.worlddev.2018.07.017.
  30. Lammers J.C. (2011). How Institutions Communicate: Institutional Messages, Institutional Logics, and Organizational Communication. Management Communication Quarterly, 25(1): 154-182. DOI: 10.1177/0893318910389280.
  31. Lillrank P. (2003). The quality of information. International Journal of Quality and Reliability Management, 20(6): 691-703. DOI: 10.1108/02656710310482131.
  32. Lin L., McCloud R.F., Bigman C.A., Viswanath K. (2017). Tuning in and catching on? Examining the relationship between pandemic communication and awareness and knowledge of MERS in the USA. Journal of Public Health (United Kingdom), 39(2): 282-289. DOI: 10.1093/pubmed/fdw028.
  33. Lohmoller J.-B. (1988). The PLS Program System: Latent Variables Path Analysis with Partial Least Squares Estimation. Multivariate Behavioral Research, 23(1): 125-127. DOI: 10.1207/s15327906mbr2301_7.
  34. Nieto A. (2006). Economia della comunicazione istituzionale. Milano: FrancoAngeli.
  35. Nutbeam D. (2000). Health literacy as a public health goal: a challenge for contemporary health education and communication strategies into the 21st century. Health Promotion International, 15(3): 259-267. DOI: 10.1093/heapro/15.3.259.
  36. Oh S.-H., Lee S.Y., Han C. (2020). The Effects of Social Media Use on Preventive Behaviors during Infectious Disease Outbreaks: The Mediating Role of Self-relevant Emotions and Public Risk Perception. Health Communication, 1-10. DOI: 10.1080/10410236.2020.1724639.
  37. Pierantoni P., Rovinetti A. (2002). La comunicazione istituzionale: dieci anni di riforme nella pubblica amministrazione. Pisa: ETS.
  38. Reynolds B., Quinn Crouse S. (2008). Effective communication during an influenza pandemic: the value of using a crisis and emergency risk communication framework. Health Promotion Practice, 9(4 Suppl): 13-17. DOI: 10.1177/1524839908325267.
  39. Rice R.E., Atkin C. (2013). Public Communication Campaigns. London: SAGE Publications, Inc.
  40. Rosa A., Marolla G., Benvenuto M. (2020). Il modello Value-Based Health Care: una possibile risposta alla gestione Covid-19. Mecosan, 113: 243-257. DOI: 10.3280/MESA2020-113029.
  41. Schaurer I., Weiß B. (2020). Investigating selection bias of online surveys on coronavirus-related behavioral outcomes. Survey Research Methods, 14(2): 103-108. DOI: 10.18148/SRM/2020.V14I2.7751.
  42. Suárez-Gonzalo S. (2018). Your likes, your vote? Big personal data exploitation and media manipulation in the US presidential election campaign of Donald Trump in 2016. Quaderns Del CAC, 44(21) (November): 25-33. -- https://www.researchgate.net/publication/337030800_Your_likes_your_vote_Big_personal_data_exploitation_and_media_manipulation_in_the_US_presidential_election_campaign_of_Donald_Trump_in_2016.
  43. Texier G., Farouh M., Pellegrin L., Jackson M.L., Meynard J.-B., Deparis X., Chaudet H. (2016). Outbreak definition by change point analysis: a tool for public health decision?. BMC Medical Informatics and Decision Making, 16(1): 33. DOI: 10.1186/s12911-016-0271-x.
  44. van Nijnatten C. (2006). Meta-communication in Institutional Talks. Qualitative Social Work: Research and Practice, 5(3): 333-349. DOI: 10.1177/1473325006067364.
  45. White L.A., Forester J.D., Craft M.E. (2018). Disease outbreak thresholds emerge from interactions between movement behavior, landscape structure, and epidemiology. Proceedings of the National Academy of Sciences, 115(28): 7374-7379. DOI: 10.1073/pnas.1801383115.
  46. Wong C.M.L., Jensen O. (2020). The paradox of trust: perceived risk and public compliance during the COVID-19 pandemic in Singapore. Journal of Risk Research, 1-10. DOI: 10.1080/13669877.2020.1756386.
  47. World Health Organization (2020). Risk communication and community engagement readiness and initial response for novel coronaviruses (nCoV). Who, 1( January): 1-3. WHO/2019-n-CoV/RCCE/2020.2.

Metriche

Caricamento metriche ...