Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Saggi

V. 158 N. 2 (2025): Rendiconti. Classe di Scienze matematiche e naturali

Cos’è la diffusione anomala (e perché è così consueta)

  • Serena Dipierro
  • Enrico Valdinoci
DOI
https://doi.org/10.3280/rndoa2025oa21159
Inviata
1 ottobre 2025
Pubblicato
17-02-2026

Abstract

In questa nota esploreremo il concetto di diffusione e vedremo come la sua interpretazione sia cambiata nel tempo. Scopriremo perché la diffusione è un'idea così utile e universale, che funziona sempre. tranne quando non funziona! In quei casi, ci viene in aiuto la "diffusione anomala", che offre una chiave di lettura diversa e complementare.

Riferimenti bibliografici

  1. Abatangelo N. and Valdinoci E. (2019). Getting acquainted with the fractional Laplacian. In: Abatangelo N. and Valdinoci E., ed. by Dipierro S., Contemporary research in elliptic PDEs and related topics. Based on lectures given during the lNdAM intensive period, University of Bari, Bari, ltaly, April 10-June 9, 2017, Cham: Springer, 1-105.
  2. Broadbridge P., Hutchinson A.J., Li X., and Mann B.Q. (2022). Stratified mobility fishery models with harvesting outside of no-take areas. In: «Appl. Math. Modelling», 105: 29-49.
  3. Brockmann D., Hufnagel L. and Geisel T. (2006). The scaling laws of human travel. In:
  4. «Nature», 439: 462-465.
  5. Bucur C. and Valdinoci E. (2016). Nonlocal diffusion and applications. In: Bucur C. and Valdinoci E., Lect. Notes Unione Mat. ltal., vol. 20. Cham-Bologna: Springer-UMI.
  6. Caffarelli L., Dipierro S. and Valdinoci E. (2017). A logistic equation with nonlocal interactions. In: «Kinet. Relat. Models», 10(1): 141-170.
  7. Cossetto T. (2012). Moto browniano e ipotesi atomica. Testo disponibile all'url:
  8. https://www.bo.infn.it/~apesci/Cossetto.pdf [consultato il 18 settembre 2025].
  9. Daskalopoulos P. and Kenig C.E. (2007). Degenerate diffusions. lnitial value problems and local regularity theory. In: Daskalopoulos P. and Kenig C.E., EMS Tracts Math, vol. 1. Zilrich: European Mathematical Society (EMS).
  10. Dipierro S., Savin O. and Valdinoci E. (2017). All functions are locally s-harmonic up to a small error. In: «J. Eur. Math. Soc.», 19(4): 957-966.
  11. Dipierro S. and Valdinoci E. (cds). A primer on Fourier Transform.
  12. Einstein A. (1905). Ober die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. In: «Ann. der Phys.»,
  13. (4)17: 549-560.
  14. Gong J., Li Q., Zeng S. and Wang J. (2024). Non-gaussian anomalous diffusion of optical vortices. In: «Phys. Rev. E.», 109: 024111.
  15. Hapca S., Crawford J.W. and Young I.M. (2009). Anomalous diffusion of heterogeneous populations characterized by normal diffusion at the individual level. In: «J. R. Soc. Interface», 6(30): 111-122.
  16. Harasti D., Lee K.A., Gallen C., Hughes J.M. and Stewart J. (2015). Movements, home range and site fidelity of snapper (Chrysophrys auratus) within a temperate marine protected area. In: «PLoS ONE», 10(11): e0142454.
  17. Lamanna J., Gloria G., Villa A. and Malgaroli A. (2024). Anomalous diffusion of synaptic vesicles and its influences on spontaneous and evoked neurotransmission. In: «J. Physiol.», 602(12): 2873-2898.
  18. Lévy P. (1925). Calcul des probabilités. Paris: Gauthier-Villars.
  19. Mandelbrot B. (1961). Post scriptum to "Final note". In: «Inf. Control.», 4: 300-304.
  20. Id. (1967). The variation of some other speculative prices. In: «J. Business», 40(4): 393-413.
  21. Mann B.Q., Cowley P.D. and Fennessy S.T. (2015). Movement patterns of surf-zone fish species in a subtropical marine protected area on the east coast of South Africa. In:
  22. «African J. Marine Sci.», 37(1): 99-114.
  23. Mufioz-Gil G., Corominas G.G. and Lewenstein M. (2021). Unsupervised learning of anomalous diffusion data: an anomaly detection approach. In: «J. Phys. A, Math. Theor.», 54(50): 19, Id/No 504001.
  24. Newburgh R., Peidle J. and Rueckner W. (2006). Einstein, Perrin, and the reality of atoms: 1905 revisited. In: «Amer. J. Physics», 74(6): 478-481.
  25. Ros-Oton X. and Serra J. (2014). The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. In: «J. Math. Pures Appl.» 9, 101(3): 275-302.
  26. Seuront L. and Stanley H.E. (2014). Anomalous diffusion and multifractality enhance mating encounters in the Ocean. In: «Proc. Natl. Acad. Sci. USA», 111(6): 2206-2211.
  27. Tintner G. (1940). The variate difference method. In: Cowles Commission for Research in Economics 5. Bloomington: The Principia Press.
  28. Vazquez J.L. (2007). The porous medium equation. In: Mathematical theory. Oxford: University Press.
  29. Wang Y. and Chen J. (2022). From normal to anomalous diffusion of water molecules in narrow carbon nanotubes with defects, gases, and salts. In: «Europhys. Lett.», 139(5): 51002