Skip to main navigation menu Skip to main content Skip to site footer

Essays

Vol. 158 No. 2 (2025): Rendiconti. Mathematics and Natural Sciences Class

Collinear homographic orbits in the general problem of N bodies

  • Antonio Giorgilli
  • Ugo Locatelli
  • Marco Sansottera
DOI
https://doi.org/10.3280/rndoa2025oa21163
Submitted
ottobre 1, 2025
Published
2026-02-17

Abstract

We revisit the problem of collinear solutions of the problem of N bodies, as investigated by Euler and Lagrange. Unlike most existing studies, we consider a general class of attractive forces. In this respect, we follow Newton's attitude in Principia of first con-sidering the problem in its generality, without assuming that the force obeys the gravitational inverse square law. We find that circular concentric orbits, also named relative equilibria, exist as a general fact. Conversely, we show that homographic orbits  o exist only for forces that obey a power law.

References

  1. Euler L. (1766). Considerationes de motu corporum coelestium. In: «Novi Commentarii Academiae Scientiarum Petropolitanae», 10: 544-558 [Reprinted in: Id. (1952), Opera omnia, s. II, vol. 25, 246-257].
  2. Euler L. (1767). De motu rectilineo trium corporum se mutuo attrahentium. In: «Novi Commentarii Academiae Scientiarum Petropolitanae», 11: 144-151 [Reprinted in: Id. (1952), Opera omnia, s. II, vol. 25, 281-289].
  3. Euler L. (1770). Considérations sur le problème des trois corps. In: «Mémoires de l'Académie des Sciences de Berlin», 19: 194-220 [Reprinted in: Id. (1953), Opera omnia, s. II, vol. 26, 246-257].
  4. Giorgilli A. and N. Guicciardini (2021). La legge gravitazionale dell'inverso del quadrato nei Principia di Newton. In: «Rendiconti dell'Istituto Lombardo Accademia di Scienze e Lettere - Classe di Scienze matematiche e naturali», 155: 169-196.
  5. Lagrange J.L. (1772). Essai sur le problème des trois corps. In: «Mémoires de l'Académie des Sciences de Paris» [Reprinted in: Id. (1873), Oeuvres de Lagrange, VI t. Paris: Gauthier-Villars, 229-331].
  6. Lehmann-Filhés R. (1891). Ueber zwei Falle des Vielkorperproblems. In: «Astronomische Nachrichten», 127: 137-144.
  7. Moeckel R. (1914). Lectures on central con gurations. In: Lecture notes of an advanced course at the Centre de Recerca Matemàtica, Barcelona. Available at the url: www-users.cse.umn.edu/~rmoeckel/notes/Notes.html [last access September 18, 2025].
  8. Moulton F.R. (1910). The straight line solutions of the problem of N bodies. In: «Annals of Mathematics», s. 2, 12: 1-17.
  9. Newton I. (1726). Philosophice Naturalis Principia Mathematica, auctore !s. Newton, Trin. Coll. Cantab. Soc. Matheseos Professore Lucasiano, & Societatis Regalis Sodali, Londini, jussu Societatis Regice ac typis Josephi Streater, Anno MDCLXXXV!!. London: Guil & Joh. Innys, Regi� Societatis typographos [third edition].
  10. Saari D.G. (2005). Collisions, rings, and other Newtonian N-body problems. In: CBMS Regional conference series in mathematics, vol. 104. Providence: American Mathematical Society.
  11. Id. (2011). Central configurations - A problem for the twenty-first century. In: Shubin, T., Hayes, D., Alexanderson, G., eds., Expeditions in mathematics, MAA Spectrum. Washington, DC: Mathematical Association of America, 283-297.
  12. Wintner A. (1941). The analytical foundations of celestial mechanics. Princeton: University Press.