Essays
Vol. 158 No. 2 (2025): Rendiconti. Mathematics and Natural Sciences Class
The discovery and synthesis of ‘quantum dots’: a milestone in the colourful future of nanoscience and technology
Abstract
On October 4, 2023, the Royal Swedish Academy of Sciences awarded Moungi G. Bawendi (Massachusetts Institute of Technology (MIT), Cambridge, MA, USA), Louis E. Brus (Columbia University, New York, NY, USA), Aleksey Yekimov (Nanocrystals Technology Inc., New York, NY, USA) the Nobel Prize in Chemistry. The three scientists, between the 80s and 90s of the last century, contributed to the study, reproducible synthesis, and development of quantum dots, QD, “planting the first seeds” that led to the flowering of the rich and colorful world of nanoscience. Their experimental results made it possible to verify the physical principles that bind quantum phenomena in nano objects. Thanks to their modular optical properties, QDs are now used by the electronics industry to generate the polychromatic light that is emitted by monitors and schematics of smart devices and TVs, while doctors and biochemists use them to map and follow the development of biological processes and tissue growth. These will be some of the aspects that will be covered during the seminar together with the more purely physical and chemical ones that regulate the properties of these fascinating nano-objects.
References
- Abdellatif A.A.H., Younis M.A., Alsharidah M., Al Rugaie O. and Tawfeek M.H. (2022). Biomedical applications of quantum dots: overview, challenges, and clinical potential. In: «Int J Nanomed», 17: 1951-1970.
- Barik P., Mondal S. (2022). Ed. Application of quantum dots in biology and medicine, recent advances. Berlin: Springer.
- Bawendi M.G. et al. (1993). Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. In: «J. Am. Chem. Soc.», 115(19): 8706-8715.
- Brus L.E. et al (1983). Quantum size effects in the redox potentials, resonance Raman spec-tra, and electronic spectra of CdS crystallites in aqueous solution. In: «J. Chem. Phys», 79(2): 1086-1088.
- Efros A.L., Brus L.E. (2021). Nanocrystal quantum dots: from discovery to modern devel-opment. In: «ACS Nano», 15 (4): 6192-6210.
- Ekimov A.I. et al. (1981). Quantum size effect in 3D microscopic semiconductor crystals. In: «JETP Lett», 34: 345-349.
- García de Arquer F.P., Talapin D.V., Klimov V.I., Arakawa Y., Bayer M. and Sargent E.H. (2021). Semiconductor quantum dots: technological progress and future challenges. In: «Science», 373: 640.
- Montanarella F. and Kovalenko M.V. (2022). Three millennia of nanocrystals. In: «ACS Nano», 16(4): 5085-5102.
- Nelson K.A. et al. (2017). Terahertz-driven luminescence and colossal Stark effect in CdSe-CdS colloidal quantum dots. In: «Nano Letters», 17(9): 5375-5380.
- Qu J. et al. (2019). Green emitted CdSe@ZnS quantum dots for FLIM and STED imaging applications. In: «J. Innov. Opt. Health Sciences», 12(05): 1940003.
- The Royal Swedish Academy of Sciences-The Nobel Committee for Chemistry (2023). Scien-tific background to the Nobel Prize in Chemistry 2023. Quantum dots – Seeds of nanosci-ence, 4 october 2023. Testo disponibile all’url: https://www.kva.se/en/news/the-nobel-prize-in-chemistry-2023/ [consultato il 18 settembre 2025].
- Weiss S. et al. (1998). Semiconductor nanocrystals as fluorescent biological labels. In: «Science», 281 (September, 25): 2013-2016.
- Yekimov A.I. (2021). Optical-properties of semiconductor quantum sots in glass matrix. In: «Phys Scripta», T39: 217-222.