Skip to main navigation menu Skip to main content Skip to site footer

Articles

Online First

Loopomics: A possible breakthrough in the understanding and control of life

DOI
https://doi.org/10.3280/pnei2025oa19417
Submitted
febbraio 17, 2025
Published
2025-02-25

Abstract

Life sciences face challenges in developing theoretical frameworks for operating on biological systems. This is evident when considering disappointing results in biomedicine, as many diseases remain poorly understood despite decades of intensive efforts. The complexity of living systems is often cited as the reason for these shortcomings. To address these challenges, I have proposed a new definition of life, which I call Loopomics. According to this new paradigm, life is defined as any natural entity consisting of agents that produce physical changes, interconnected through chains of interactions that form closed loops. These loops create nonlinear systems whose dynamics are known to be characterized by single equilibrium points or transitions between different equilibrium points. The number of equilibrium points is determined by the kind of loop but is modified by bifurcation parameters, whose variation over time can significantly alter the behavior of the system. Thus, bifurcation parameters are key targets for interventions aimed at acquiring control of these systems. Biological loops give rise to ordered and predictable accumulations of materials that realize epiphenomena, including subcellular organelles, cells, tissues, organs, and organisms.
These epiphenomena do not help in conceptualizing life and can be only used to identify, map, and manipulate the loop systems. The verification of the Loopomics hypothesis can be carried out by developing loop models of pathogenesis, identifying bifurcation parameters, and addressing them as therapeutic targets. If this approach is successful, it would provide positive validation for the hypothesis and could chart a new direction for biomedical research and applied biology.

References

  1. Alon U. (2019). An Introduction to Systems Biology: Design Principles of Biological Circuits (2a ed.). Second edition. | Boca Raton, Fla.: CRC Press, [2019]: Chapman and Hall/CRC. Doi: 10.1201/9780429283321.
  2. Anderson R.M., Hadjichrysanthou C., Evans S., & Wong M.M. (2017). Why do so many clinical trials of therapies for Alzheimer’s disease fail? The Lancet, 390(10110), 2327-2329. Doi: 10.1016/S0140‐6736(17)32399‐1.
  3. Angeli D., Ferrell J.E., & Sontag E.D. (2004). Detection of multistability, bifurcations, and hysteresis in a large class of biological positive‐feedback systems. Proceedings of the National Academy of Sciences, 101(7), 1822-1827. Doi: 10.1073/pnas.0308265100.
  4. Benner S.A. (2010). Defining Life. Astrobiology, 10(10), 1021-1030. Doi: 10.1089/ast.2010.0524.
  5. Bianconi E., Piovesan A., Facchin F., Beraudi A., Casadei R., Frabetti F., Vitale L., Pelleri M.C., Tassani S., Piva F., Perez‐Amodio S., Strippoli P., & Canaider S. (2013). An estimation of the number of cells in the human body. Annals of Human Biology, 40(6), 463-471. Doi: 10.3109/03014460.2013.807878.
  6. Blanchini F., Franco E., & Giordano G. (2014). A Structural Classification of Candidate Oscillatory and Multistationary Biochemical Systems. Bulletin of Mathematical Biology, 76(10), 2542-2569. Doi: 10.1007/s11538‐014‐0023‐y.
  7. Burlando B. (2017). Loopomics: a new functional approach to life. Journal of Applied Physiology, 123(4), 1011-1013. Doi: 10.1152/japplphysiol.00173.2017.
  8. Burlando B. (2022). A general hypothesis of multistable systems in pathophysiology. F1000Research, 11, 906. Doi: 10.12688/f1000research.123183.2.
  9. Burlando B., & Demori I. (2024). Neurosteroids as a possible new horizon in the treatment of fibromyalgia. Medical Hypotheses, 191, 111444. Doi: 10.1016/j.mehy.2024.111444.
  10. Burlando B., Losacco S., Villa V., Fedele E., & Ricciarelli R. (2022). A New Bistable Switch Model of Alzheimer’s Disease Pathogenesis. International Journal of Molecular Sciences, 23(13), 7061. Doi: 10.3390/ijms23137061.
  11. Burlando B., Milanese M., Giordano G., Bonifacino T., Ravera S., Blanchini F., & Bonanno G. (2020). A multistationary loop model of ALS unveils critical molecular interactions involving mitochondria and glucose metabolism. PLOS ONE, 15(12), e0244234. Doi: 10.1371/journal.pone.0244234.
  12. Campbell A.K. (2003). Save those molecules! Molecular biodiversity and life*. Journal of Applied Ecology, 40(2), 193-203. Doi: 10.1046/j.1365‐2664.2003.00803.x.
  13. Cleland C.E. (2019). The Quest for a Universal Theory of Life: Searching for Life As We Don’t Know It (1a ed.). Cambridge University Press. Doi: 10.1017/9781139046893.
  14. Demori I., Giordano G., Mucci V., Losacco S., Marinelli L., Massobrio P., Blanchini F., & Burlando B. (2022). Thalamocortical bistable switch as a theoretical model of fibromyalgia pathogenesis inferred from a literature survey. Journal of Computational Neuroscience, 50(4), 471-484. Doi: 10.1007/s10827‐022‐00826‐8.
  15. Demori I., Losacco S., Giordano G., Mucci V., Blanchini F., & Burlando B. (2024). Fibromyalgia pathogenesis explained by a neuroendocrine multistable model. PLOS ONE, 19(7), e0303573. Doi: 10.1371/journal.pone.0303573.
  16. Dhar P.K., & Giuliani A. (2010). Laws of biology: why so few? Systems and Synthetic Biology, 4(1), 7-13. Doi: 10.1007/s11693‐009‐9049‐0.
  17. Domijan M., & Pécou E. (2012). The interaction graph structure of mass‐action reaction networks. Journal of Mathematical Biology, 65(2), 375-402. Doi: 10.1007/s00285‐011‐0462‐0.
  18. El‐Samad H. (2021). Biological feedback control ‒ Respect the loops. Cell Systems, 12(6), 477-487. Doi: 10.1016/j.cels.2021.05.004.
  19. Evans W., Meslin E.M., Kai J., & Qureshi N. (2024). Precision Medicine ‒ Are We There Yet? A Narrative Review of Precision Medicine’s Applicability in Primary Care. Journal of Personalized Medicine, 14(4), 418. Doi: 10.3390/jpm14040418.
  20. Feynman R.P., Leighton R.B., & Sands M.L. (1963). The Feynman lectures on physics (Vol. 3). Reading, Massachussets: Addison‐Wesley.
  21. Gesztelyi R., Zsuga J., Kemeny‐Beke A., Varga B., Juhasz B., & Tosaki A. (2012). The Hill equation and the origin of quantitative pharmacology. Archive for History of Exact Sciences, 66(4), 427-438. Doi: 10.1007/s00407‐012‐0098‐5.
  22. Glass L. (2015). Dynamical disease: Challenges for nonlinear dynamics and medicine. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(9), 097603. Doi: 10.1063/1.4915529.
  23. Gómez‐Márquez J. (2021). What is life? Molecular Biology Reports, 48(8), 6223-6230. Doi: 10.1007/s11033‐021‐06594‐5.
  24. Hołyst R., Bubak G., Kalwarczyk T., Kwapiszewska K., Michalski J., & Pilz M. (2024). Living Cell as a Self‐Synchronized Chemical Reactor. The Journal of Physical Chemistry Letters, 15(13), 3559-3570. Doi: 10.1021/acs.jpclett.4c00190.
  25. Jheeta S. (2017). The Landscape of the Emergence of Life. Life, 7(2), 27. Doi: 10.3390/life7020027.
  26. Lorenz N.L. (1993). The essence of Chaos. Seattle, WA, USA: University of Washington.
  27. Luenberger D.G. (1979). Introduction to Dynamic Systems: Theory, Models, and Applications. New York, NY, USA: Wiley.
  28. Maiarú M., Hollywood A., & Trimboli M. (2023). Editorial: From bench to bedside: the challenge of chronic pain. Frontiers in Pain Research, 4, 1271468. Doi: 10.3389/fpain.2023.1271468.
  29. Naylor S., & Chen J.Y. (2010). Unraveling Human Complexity and Disease with Systems Biology and Personalized Medicine. Personalized Medicine, 7(3), 275-289. Doi: 10.2217/pme.10.16.
  30. Petrov D., Mansfield C., Moussy A., & Hermine O. (2017). ALS Clinical Trials Review: 20 Years of Failure. Are We Any Closer to Registering a New Treatment? Frontiers in Aging Neuroscience, 9. Doi: 10.3389/fnagi.2017.00068.
  31. Portugali J. (2023). Schrödinger’s What is Life? ‒ Complexity, Cognition and the City. Entropy, 25(6), 872. Doi: 10.3390/e25060872.
  32. Rocca E., & Anjum R.L. (2020). Complexity, Reductionism and the Biomedical Model. In: R.L. Anjum, S. Copeland, & E. Rocca (Eds.), Rethinking Causality, Complexity and Evidence for the Unique Patient: A Cause‐Health Resource for Healthcare Professionals and the Clinical Encounter (pp. 75-94). Cham: Springer International Publishing. Doi: 10.1007/978‐3‐030‐41239‐5_5.
  33. Rombouts J., & Gelens L. (2021). Dynamic bistable switches enhance robustness and accuracy of cell cycle transitions. PLOS Computational Biology, 17(1), e1008231. Doi: 10.1371/journal.pcbi.1008231.
  34. Schrödinger E. (1944). What is Life? Cambridge, UK: Cambridge University Press. Doi: 10.1017/CBO9781139644129.
  35. Silver R.A. (2010). Neuronal arithmetic. Nature Reviews Neuroscience, 11(7), 474-489. Doi: 10.1038/nrn2864.
  36. Tsumoto K., Ueta T., Yoshinaga T., & Kawakami H. (2012). Bifurcation analyses of nonlinear dynamical systems: From theory to numerical computations. Nonlinear Theory and Its Applications, IEICE, 3(4), 458-476. Doi: 10.1587/nolta.3.458.
  37. Vittadello S.T., & Stumpf M.P.H. (2022). Open problems in mathematical biology. Mathematical Biosciences, 354, 108926. Doi: 10.1016/j.mbs.2022.108926.
  38. Watanabe R., Okano T., Gon T., Yoshida N., Fukumoto K., Yamada S., & Hashimoto M. (2022). Difficult‐to‐treat rheumatoid arthritis: Current concept and unsolved problems. Frontiers in Medicine, 9, 1049875. Doi: 10.3389/fmed.2022.1049875.