Skip to main navigation menu Skip to main content Skip to site footer

Articles

Online First

The microbiota-immune interaction in the gut-brain axis

DOI
https://doi.org/10.3280/pnei2025oa20961
Submitted
settembre 8, 2025
Published
2025-09-17

Abstract

The growing body of evidence on the role of the gut microbiota (GM) in regulating the bidirectional gut‐brain axis suggests the existence of a complex network that also involves the immune system (IS). The interaction between GM and IS is crucial for the development and modulation of immune responses, through microbial metabolites such as short‐chain fatty acids (SCFAs), which influence both mucosal immunity and neuroinflammation. SCFAs regulate immune homeostasis and the function of the blood‐brain barrier (BBB), affecting microglia, astrocytes, and neurons. These mechanisms are particularly relevant in neurological disorders such as Parkinson’s disease, where dysbiosis and SCFA alterations contribute to neurodegeneration.
Although most results derive from preclinical studies and should be interpreted with caution, the use of probiotics, prebiotics, and postbiotics represents a promising therapeutic approach. The “microbiota‐immune‐brain” model opens new insights for the prevention and treatment of neurological and psychiatric disorders, although larger and more specific clinical trials are needed to confirm its applicability in humans.

References

  1. Abbott, R. D., Petrovitch, H., White, L. R., Masaki, K. H., Tanner, C. M., Curb, J. D., ... & Ross, G. W. (2001). Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology, 57(3), 456–462. DOI: 10.1212/WNL.57.3.456.
  2. Aho, V. T. E., Houser, M. C., Pereira, P. A. B., Chang, J., Rudi, K., Paulin, L., ... & Scheperjans, F. (2021). Relationships of gut microbiota, short‐chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Molecular Neurodegeneration, 16(1), 6. DOI: 10.1186/s13024‐021‐00427‐6.
  3. Araki, A., Kanai, T., Ishikura, T., Makita, S., Uraushihara, K., Iiyama, R., Totsuka, T., Takeda, K., Akira, S., & Watanabe, M. (2005). MyD88‐deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis. Journal of Gastroenterology, 40(1), 16-23. DOI: 10.1007/s00535‐004‐1492‐9.
  4. Bercik, P., et al. (2011). The intestinal microbiota affect central levels of brain‐derived neurotrophic factor and behavior in mice. Gastroenterology, 141(2), 599-609.e3. DOI: 10.1053/j.gastro.2011.04.052.
  5. Bottaccioli, F., Bottaccioli, A.G. (2017). Psiconeuroendocrinoimmunologia e scienza della cura integrata. Il Manuale. Milano: Edra.
  6. Braniste, V., et al. (2014). The gut microbiota influences blood‐brain barrier permeability in mice. Science Translational Medicine, 6(263), 263ra158. DOI: 10.1126/scitranslmed.3009759.
  7. Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., ... & Pike, N. B. (2003). The orphan G protein‐coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. Journal of Biological Chemistry, 278(13), 11312-11319. DOI: 10.1074/jbc.M211609200.
  8. Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut–brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 28(2), 203-209.
  9. Christiansen, C. B., Gabe, M. B. N., Svendsen, B., Dragsted, L. O., Rosenkilde, M. M., & Holst, J. J. (2018). The impact of short‐chain fatty acids on GLP‐1 and PYY secretion from the isolated perfused rat colon. American Journal of Physiology‐Gastrointestinal and Liver Physiology, 315(1), G53–G65. DOI: 10.1152/ajpgi.00346.2017.
  10. Chung, H., Pamp, S. J., Hill, J. A., Surana, N. K., Edelman, S. M., Troy, E. B., Reading, N. C., Villablanca, E. J., Wang, S., Mora, J. R., Umesaki, Y., Mathis, D., Benoist, C., Relman, D. A., & Kasper, D. L. (2012). Gut immune maturation depends on colonization with a host‐specific microbiota. Cell, 149(7), 1578-1593. DOI: 10.1016/j.cell.2012.04.037.
  11. Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. E., & Macfarlane, G. T. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 28(10), 1221-1227. DOI: 10.1136/gut.28.10.1221.
  12. Derrien, M., Vaughan, E. E., Plugge, C. M., & de Vos, W. M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin‐degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1469-1476. DOI: 10.1099/ijs.0.02873‐0.
  13. Dinan, T. G., & Cryan, J. F. (2017). The microbiome-gut-brain axis in health and disease. Gastroenterology Clinics of North America, 46(1), 77-89. DOI: 10.1016/j.gtc.2016.09.007.
  14. Erny, D., et al. (2015). Host microbiota constantly controls maturation and function of microglia in the CNS. Nature Neuroscience, 18(7), 965-977. DOI: 10.1038/nn.4030.
  15. Fessler, E. B., Chibane, F. L., Wang, Z., & Chuang, D. M. (2013). Potential roles of HDAC inhibitors in mitigating ischemia‐induced brain damage and facilitating endogenous regeneration and recovery. Current Pharmaceutical Design, 19(28), 5105-5120. DOI: 10.2174/1381612811319280009.
  16. Hansen, C. H., Nielsen, D. S., Kverka, M., Zakostelska, Z., Klimesova, K., Hudcovic, T., Tlaskalova‐Hogenova, H., & Hansen, A. K. (2012). Patterns of early gut colonization shape future immune responses of the host. PLOS ONE, 7(3), e34043. DOI: 10.1371/journal.pone.0034043.
  17. Heijtz, R. D., et al. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences, 108(7), 3047. DOI: 10.1073/pnas.1010529108.
  18. Hoyles, L., Snelling, T., Umlai, U. K., Nicholson, J. K., Carding, S. R., Glen, R. C., & McArthur, S. (2018). Microbiome-host systems interactions: Protective effects of propionate upon the blood‐brain barrier. Microbiome, 6(1), 55. DOI: 10.1186/s40168‐018‐0439‐y.
  19. Kelly, C. J., Zheng, L., Campbell, E. L., Saeedi, B., Scholz, C. C., Bayless, A. J., ... & Colgan, S. P. (2015). Crosstalk between microbiota‐derived short‐chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host & Microbe, 17(5), 662-671. DOI: 10.1016/j.chom.2015.03.005.
  20. Keshavarzian, A., Green, S. J., Engen, P. A., Voigt, R. M., Naqib, A., Forsyth, C. B., ... & Shannon, K. M. (2015). Colonic bacterial composition in Parkinson’s disease. Movement Disorders, 30(10), 1351-1360. DOI: 10.1002/mds.26307.
  21. Kim, C. H. (2021). Control of lymphocyte functions by gut microbiota‐derived short‐chain fatty acids. Cellular & Molecular Immunology, 18(5), 1161-1171. DOI: 10.1038/s41423‐020‐00625‐0.
  22. Kim, C. H., Park, J., & Kim, M. (2014). Gut microbiota‐derived short‐chain fatty acids, T cells, and inflammation. Immune Network, 14(6), 277-288. DOI: 10.4110/in.2014.14.6.277.
  23. Kim, M., Qie, Y., Park, J., & Kim, C. H. (2016). Gut microbial metabolites fuel host antibody responses. Cell Host & Microbe, 20(2), 202-214.
  24. Kinnebrew, M. A., & Pamer, E. G. (2012). Innate immune signaling in defense against intestinal microbes. Immunological Reviews, 245(1), 113-131. DOI: 10.1111/j.1600‐065X.2011.01081.x.
  25. Kumar, V., Sinha, A. K., Makkar, H. P. S., de Boeck, G., & Becker, K. (2012). Dietary roles of nonstarch polysaccharides in human nutrition: A review. Critical Reviews in Food Science and Nutrition, 52(10), 899-935.
  26. Kwon, O., Lee, S., Kim, J. H., Kim, H., & Lee, S. W. (2015). Altered gut microbiota composition in Rag1‐deficient mice contributes to modulating homeostasis of hematopoietic stem and progenitor cells. Immune Network, 15(5), 252–259. DOI: 10.4110/in.2015.15.5.252.
  27. Li, J., Zhao, J., Chen, L., Gao, H., Zhang, J., Wang, D., ... & Xue, Z. (2023). α‐Synuclein induces Th17 differentiation and impairs the function and stability of Tregs by promoting RORC transcription in Parkinson’s disease. Brain, Behavior, and Immunity, 108, 32-44. DOI: 10.1016/j.bbi.2022.10.023.
  28. Licciardi, P. V., Ververis, K., & Karagiannis, T. C. (2011). Histone deacetylase inhibition and dietary short‐chain fatty acids. ISRN Allergy, 2011, 869647. DOI: 10.5402/2011/869647.
  29. Liu, J., Wang, F., Liu, S., Du, J., Hu, X., Xiong, J., ... & Sun, J. (2017). Sodium butyrate exerts protective effect against Parkinson’s disease in mice via stimulation of glucagon like peptide‐1. Journal of the Neurological Sciences, 381, 176-181. DOI: 10.1016/j.jns.2017.08.3235.
  30. Luczynski, P., McVey Neufeld, K. A., Oriach, C. S., Clarke, G., Dinan, T. G., & Cryan, J. F. (2016). Growing up in a bubble: Using germ‐free animals to assess the influence of the gut microbiota on brain and behavior. International Journal of Neuropsychopharmacology, 19(8), pyw020. DOI: 10.1093/ijnp/pyw020.
  31. O’Riordan, K. J., Moloney, G. M., Keane, L., Clarke, G., & Cryan, J. F. (2025). The gut microbiotaimmune‐brain axis: Therapeutic implications. Cell Reports Medicine, 6(3), 101982. DOI: 10.1016/j.xcrm.2025.101982.
  32. Pierre, K., & Pellerin, L. (2005). Monocarboxylate transporters in the central nervous system: Distribution, regulation and function. Journal of Neurochemistry, 94(1), 1-14. DOI: 10.1111/j.1471‐4159.2005.03168.x.
  33. Qiao, C. M., Sun, M. F., Jia, X. B., Li, Y., Zhang, B. P., Zhao, L. P., ... & Shen, Y. Q. (2020). Sodium butyrate exacerbates Parkinson’s disease by aggravating neuroinflammation and colonic inflammation in MPTP‐induced mice model. Neurochemical Research, 45(9), 2128-2142. DOI: 10.1007/s11064‐020‐03074‐3.
  34. Ratsika, A., Cruz Pereira, J. S., Lynch, C. M. K., Clarke, G., & Cryan, J. F. (2023). Microbiota-immune-brain interactions: A lifespan perspective. Current Opinion in Neurobiology, 78, 102652. DOI: 10.1016/j.conb.2022.102652.
  35. Rivière, A., Selak, M., Lantin, D., Leroy, F., & De Vuyst, L. (2016). Bifidobacteria and butyrateproducing colon bacteria: Importance and strategies for their stimulation in the human gut. Frontiers in Microbiology, 7, 979. DOI: 10.3389/fmicb.2016.00979.
  36. Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9(5), 313-323. DOI: 10.1038/nri2515. Erratum: Nature Reviews Immunology, 9(8), 600.
  37. Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., ... & Mazmanian, S. K. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 167(6), 1469-1480.e12. DOI: 10.1016/j.cell.2016.11.018.
  38. Shulzhenko, N., Morgun, A., Hsiao, W., Battle, M., Yao, M., Gavrilova, O., Orandle, M., Mayer, L., Macpherson, A. J., McCoy, K. D., & Fraser-Liggett, C. (2011). Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nature Medicine, 17, 1585-1593. DOI: 10.1038/nm.2505.
  39. Silva, Y. P., Bernardi, A., & Frozza, R. L. (2020). The role of short‐chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology, 11, 25. DOI: 10.3389/fendo.2020.00025.
  40. Sittipo, P., Choi, J., Lee, S., & Lee, Y. K. (2022). The function of gut microbiota in immune‐related neurological disorders: A review. Journal of Neuroinflammation, 19(1), 154. DOI: 10.1186/s12974‐022‐02510‐1.
  41. Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly‐Y, M., ... & Garrett, W. S. (2013). The microbial metabolites, short‐chain fatty acids, regulate colonic Treg cell homeostasis. Science, 341(6145), 569–573. DOI: 10.1126/science.1241165.
  42. Spichak, S., Donoso, F., Moloney, G. M., Gunnigle, E., Brown, J. M., Codagnone, M., ... & Cryan, J. F. (2021). Microbially‐derived short‐chain fatty acids impact astrocyte gene expression in a sex‐specific manner. Brain, Behavior, & Immunity-Health, 16, 100318. DOI: 10.1016/j.bbih.2021.100318.
  43. Tan, E. K., Chao, Y. X., West, A., Chan, L. L., Poewe, W., & Jankovic, J. (2020). Parkinson disease and the immune system – Associations, mechanisms and therapeutics. Nature Reviews Neurology, 16(6), 303-318. DOI: 10.1038/s41582‐020‐0344‐4.
  44. Troy, E. B., & Kasper, D. L. (2010). Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Frontiers in Bioscience (Landmark Edition), 15(1), 25-34. DOI: 10.2741/3603.
  45. Wang, Y., et al. (2018). The gut‐microglia connection: Implications for central nervous system diseases. Frontiers in Immunology, 9, 2325. DOI: 10.3389/fimmu.2018.02325.
  46. Yamawaki, Y., Yoshioka, N., Nozaki, K., Ito, H., Oda, K., Harada, K., ... & Akagi, H. (2018). Sodium butyrate abolishes lipopolysaccharide‐induced depression‐like behaviors and hippocampal microglial activation in mice. Brain Research, 1680, 13-38. DOI: 10.1016/j.brainres.2017.12.004.
  47. Yang, L. L., Millischer, V., Rodin, S., MacFabe, D. F., Villaescusa, J. C., & Lavebratt, C. (2020). Enteric short‐chain fatty acids promote proliferation of human neural progenitor cells. Journal of Neurochemistry, 154(6), 635–646. DOI: 10.1111/jnc.14928.
  48. Zhang, X., Tang, B., & Guo, J. (2023). Parkinson’s disease and gut microbiota: From clinical to mechanistic and therapeutic studies. Translational Neurodegeneration, 12(1), 59. DOI: 10.1186/s40035‐023‐00392‐8