In recent years, cases of food hypersensitivity reactions in the Western population have significantly increased, with over 50% of patients with functional gastrointestinal disorders (FGID) believing that food triggers their symptoms. The main culprits include FODMAPs (Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols) and specific protein components of wheat, such as gluten and amylase/trypsin inhibitors (ATIs). Gastrointestinal symptoms related to carbohydrate malabsorption stem from two primary mechanisms. First, unabsorbed carbohydrates can feed certain gut bacteria, leading to fermentative dysbiosis and gas production, which causes bloating and abdominal distension. Second, a diet rich in unabsorbed sugars draws water into the intestinal lumen, accelerating transit and resulting in diarrhea. Adverse reactions to gluten include celiac disease, wheat allergy, and non‐celiac gluten/wheat sensitivity (NCGS/WS). The latter triggers both intestinal and extra‐intestinal symptoms, which improve upon gluten withdrawal. Recent studies suggest that, in addition to gluten, other wheat components, such as ATIs and FODMAPs, can contribute to symptom exacerbation. NCGS/WS is associated with intestinal dysbiosis and immune alterations. Although a gluten‐free diet is currently considered the only available therapeutic strategy, it may negatively impact gut microbiota and the bioavailability of minerals and vitamins. Recent research suggests the use of strain‐specific probiotics to improve fermentative dysbiosis, reducing gas‐producing species and enhancing the digestion and absorption of carbohydrates, gluten proteins, and micronutrients. In conclusion, an integrated approach combining a low‐FODMAP diet (LFD) with specific probiotics could be an effective strategy for managing carbohydrate malabsorption symptoms in FGID, restoring intestinal homeostasis, and counteracting associated microbial hyperfermentation.
References
Ahn S.-I., Kim M.S., Park D.G., Han B.K., & Kim Y.J. (2023). Effects of probiotics administration on lactose intolerance in adulthood: A meta-analysis. Journal of Dairy Science, 106(7), 4489-4501. Doi: 10.3168/jds.2022-22762.
Algera J.P., Demir D., Törnblom H., Nybacka S., Simrén M., & Störsrud S. (2022). Low FODMAP diet reduces gastrointestinal symptoms in irritable bowel syndrome and clinical response could be predicted by symptom severity: A randomized crossover trial. Clinical Nutrition (Edinburgh, Scotland), 41(12), 2792-2800. Doi: 10.1016/j.clnu.2022.11.001.
Barbaro M.R., Cremon C., Wrona D., Fuschi D., Marasco G., Stanghellini V., & Barbara G. (2020). Non-Celiac Gluten Sensitivity in the Context of Functional Gastrointestinal Disorders. Nutrients, 12(12), 3735. Doi: 10.3390/nu12123735.
Barkhidarian B., Roldos L., Iskandar M.M., Saedisomeolia A., & Kubow S. (2021). Probiotic Supplementation and Micronutrient Status in Healthy Subjects: A Systematic Review of Clinical Trials. Nutrients, 13(9), 3001. Doi: 10.3390/nu13093001.
Bascuñán K.A., Araya M., Roncoroni L., Doneda L., & Elli L. (2020). Dietary Gluten as a Conditioning Factor of the Gut Microbiota in Celiac Disease. Advances in Nutrition (Bethesda, Md.), 11(1), 160-174. Doi: 10.1093/advances/nmz080.
Bayless T.M., Brown E., & Paige D.M. (2017). Lactase Non-persistence and Lactose Intolerance. Current Gastroenterology Reports, 19(5), 23. Doi: 10.1007/s11894-017-0558-9.
Beggs M.R., Bhullar H., Dimke H., & Alexander R.T. (2022). The contribution of regulated colonic calcium absorption to the maintenance of calcium homeostasis. The Journal of Steroid Biochemistry and Molecular Biology, 220, 106098. Doi: 10.1016/j.jsbmb.2022.106098.
Bielik V., & Kolisek M. (2021). Bioaccessibility and Bioavailability of Minerals in Relation to a Healthy Gut Microbiome. International Journal of Molecular Sciences, 22(13), 6803. Doi: 10.3390/ijms22136803.
Caio G., Lungaro L., Segata N., Guarino M., Zoli G., Volta U., & De Giorgio R. (2020). Effect of Gluten-Free Diet on Gut Microbiota Composition in Patients with Celiac Disease and Non-Celiac Gluten/Wheat Sensitivity. Nutrients, 12(6), 1832. Doi: 10.3390/nu12061832.
Caio G., Volta U., Sapone A., Leffler D.A., De Giorgio R., Catassi C., & Fasano A. (2019). Celiac disease: a comprehensive current review. BMC Medicine, 17(1), 142. Doi: 10.1186/s12916-019-1380-z.
Calabriso N., Scoditti E., Massaro M., Maffia M., Chieppa M., Laddomada B., & Carluccio M.A. (2022). Non-Celiac Gluten Sensitivity and Protective Role of Dietary Polyphenols. Nutrients, 14(13), 2679. Doi: 10.3390/nu14132679.
Caminero A., McCarville J.L., Zevallos V.F., Pigrau M., Yu X.B., Jury J., Galipeau H.J., Clarizio A.V., Casqueiro J., Murray J.A., Collins S.M., Alaedini A., Bercik P., Schuppan D., & Verdu E.F. (2019). Lactobacilli Degrade Wheat Amylase Trypsin Inhibitors to Reduce Intestinal Dysfunction Induced by Immunogenic Wheat Proteins. Gastroenterology, 156(8), 2266-2280. Doi: 10.1053/j.gastro.2019.02.028.
Carbone F., Van den Houte K., Besard L., Tack C., Arts J., Caenepeel P., Piessevaux H., Vandenberghe A., Matthys C., Biesiekierski J., Capiau L., Ceulemans S., Gernay O., Jones L., Maes S., Peetermans C., Raat W., Stubbe J., Van Boxstael R., Vandeput O., Van Steenbergen S., Van Oudenhove L., Vanuytsel T., Jones M., Tack J., DOMINO Study Collaborators, & Domino Study Collaborators. (2022). Diet or medication in primary care patients with IBS: the DOMINO study - a randomised trial supported by the Belgian Health Care Knowledge Centre (KCE Trials Programme) and the Rome Foundation Research Institute. Gut, 71(11), 2226-2232. Doi: 10.1136/gutjnl-2021-325821.
Chamniansawat S., Suksridechacin N., & Thongon N. (2023). Current opinion on the regulation of small intestinal magnesium absorption. World Journal of Gastroenterology, 29(2), 332-342. Doi: 10.3748/wjg.v29.i2.332.
Deng Y., Misselwitz B., Dai N., & Fox M. (2015). Lactose Intolerance in Adults: Biological Mechanism and Dietary Management. Nutrients, 7(9), 8020-8035. Doi: 10.3390/nu7095380.
Dieterich W., Schuppan D., Schink M., Schwappacher R., Wirtz S., Agaimy A., Neurath M.F., & Zopf Y. (2019). Influence of low FODMAP and gluten-free diets on disease activity and intestinal microbiota in patients with non-celiac gluten sensitivity. Clinical Nutrition (Edinburgh, Scotland), 38(2), 697-707. Doi: 10.1016/j.clnu.2018.03.017.
Dje Kouadio D.K., Wieringa F., Greffeuille V., & Humblot C. (2024). Bacteria from the gut influence the host micronutrient status. Critical Reviews in Food Science and Nutrition, 64(29), 10714-10729. Doi: 10.1080/10408398.2023.2227888.
Geisslitz S., Shewry P., Brouns F., America A.H.P., Caio G.P.I., Daly M., D’Amico S., De Giorgio R., Gilissen L., Grausgruber H., Huang X., Jonkers D., Keszthelyi D., Larré C., Masci S., Mills C., Møller M.S., Sorrells M.E., Svensson B., Zevallos V.F., & Weegels P.L. (2021). Wheat ATIs: Characteristics and Role in Human Disease. Frontiers in Nutrition, 8, 667370. Doi: 10.3389/fnut.2021.667370.
González A., Gálvez N., Martín J., Reyes F., Pérez-Victoria I., & Dominguez-Vera J.M. (2017). Identification of the key excreted molecule by Lactobacillus fermentum related to host iron absorption. Food Chemistry, 228, 374-380. Doi: 10.1016/j.foodchem.2017.02.008.
Halmos E.P., Power V.A., Shepherd S.J., Gibson P.R., & Muir J.G. (2014). A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology, 146(1), 67-75.e5. Doi: 10.1053/j.gastro.2013.09.046.
Heydari L., Kermanshahi R.K., Gharavi S., & Moosavi-Nejad Z. (2023). Characterization of the recombinant PepX peptidase from Lactobacillus fermentum and its effect on gliadin protein hydrolysis in vitro. Biologia, 78(2), 565-577. Doi: 10.1007/s11756-022-01273-7.
Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., Calder P.C., & Sanders M.E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(8), 506-514. Doi: 10.1038/nrgastro.2014.66.
Holtmann G., Shah A., & Morrison M. (2017). Pathophysiology of Functional Gastrointestinal Disorders: A Holistic Overview. Digestive Diseases (Basel, Switzerland), 35 Suppl 1, 5-13. Doi: 10.1159/000485409.
Ispiryan L., Zannini E., & Arendt E.K. (2022). FODMAP modulation as a dietary therapy for IBS: Scientific and market perspective. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1491-1516. Doi: 10.1111/1541-4337.12903.
Karadima V., Kraniotou C., Bellos G., & Tsangaris G.T. (2016). Drug-micronutrient interactions: food for thought and thought for action. The EPMA Journal, 7(1), 10. Doi: 10.1186/s13167-016-0059-1.
Kasaikina M.V., Kravtsova M.A., Lee B.C., Seravalli J., Peterson D.A., Walter J., Legge R., Benson A.K., Hatfield D.L., & Gladyshev V.N. (2011). Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 25(7), 2492-2499. Doi: 10.1096/fj.11-181990.
Lebeer S., Vanderleyden J., & De Keersmaecker S.C.J. (2010). Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nature Reviews. Microbiology, 8(3), 171-184. Doi: 10.1038/nrmicro2297.
Li C., Pi G., & Li F. (2021). The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Frontiers in Cellular and Infection Microbiology, 11. Doi: 10.3389/fcimb.2021.579323.
Makharia G., Gibson P., Bai J., Crowe S., Karakan T., Lee Y.Y., McNamara L., Muir J., Oruc N., Quigley E., Sanders D., & Tuck C. (2018). World gastroenterology organisation global guidelines: Diet and the gut.
Markowiak P., & Śliżewska K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9(9), 1021. Doi: 10.3390/nu9091021.
Mohan J., Ali S.A., Suvartan R., Kapila S., Sharma R., Tomar S.K., Behare P., & Yadav H. (2018). Bioavailability of biotransformed zinc enriched dahi in wistar rats. International Journal of Probiotics & Prebiotics, 13(2-3), 45-54.
Morato-Martínez M., López-Plaza B., Santurino C., Palma-Milla S., & Gómez-Candela C. (2020). A Dairy Product to Reconstitute Enriched with Bioactive Nutrients Stops Bone Loss in High-Risk Menopausal Women without Pharmacological Treatment. Nutrients, 12(8), 2203. Doi: 10.3390/nu12082203.
Nath A., Molnár M.A., Csighy A., Kőszegi K., Galambos I., Huszár K.P., Koris A., & Vatai G. (2018). Biological Activities of Lactose-Based Prebiotics and Symbiosis with Probiotics on Controlling Osteoporosis, Blood-Lipid and Glucose Levels. Medicina (Kaunas, Lithuania), 54(6), 98. Doi: 10.3390/medicina54060098.
Neeser J.R., Granato D., Rouvet M., Servin A., Teneberg S., & Karlsson K.A. (2000). Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology, 10(11), 1193-1199. Doi: 10.1093/glycob/10.11.1193.
Omer A., & Quigley E.M.M. (2018). Carbohydrate Maldigestion and Malabsorption. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association, 16(8), 1197-1199. Doi: 10.1016/j.cgh.2018.01.048.
Peredo-Lovillo A., Romero-Luna H.E., & Jiménez-Fernández M. (2020). Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food Research International (Ottawa, Ont.), 136, 109473. Doi: 10.1016/j.foodres.2020.109473.
Priyodip P., Prakash P.Y., & Balaji S. (2017). Phytases of Probiotic Bacteria: Characteristics and Beneficial Aspects. Indian Journal of Microbiology, 57(2), 148-154. Doi: 10.1007/s12088-017-0647-3.
Ramírez-Acosta S., Selma-Royo M., Collado M.C., Navarro-Roldán F., Abril N., & García-Barrera T. (2022). Selenium supplementation influences mice testicular selenoproteins driven by gut microbiota. Scientific Reports, 12, 4218. Doi: 10.1038/s41598-022-08121-3.
Rinninella E., Cintoni M., Raoul P., Lopetuso L.R., Scaldaferri F., Pulcini G., Miggiano G.A.D., Gasbarrini A., & Mele M.C. (2019). Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients, 11(10), 2393. Doi: 10.3390/nu11102393.
Schiffrin E.J., & Blum S. (2002). Interactions between the microbiota and the intestinal mucosa. European Journal of Clinical Nutrition, 56 Suppl 3, S60-64. Doi: 10.1038/sj.ejcn.1601489.
Scholz-Ahrens K.E., Ade P., Marten B., Weber P., Timm W., Açil Y., Glüer C.-C., & Schrezenmeir J. (2007). Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. The Journal of Nutrition, 137(3 Suppl 2), 838S-46S. Doi: 10.1093/jn/137.3.838S.
Skalny A.V., Aschner M., Santamaria A., Filippini T., Gritsenko V.A., Tizabi Y., Zhang F., Guo X., Rocha J.B.T., & Tinkov A.A. (2025). The Role of Gut Microbiota in the Neuroprotective Effects of Selenium in Alzheimer’s Disease. Molecular Neurobiology, 62(2), 1675-1692. Doi: 10.1007/s12035-024-04343-w.
Skodje G.I., Sarna V.K., Minelle I.H., Rolfsen K.L., Muir J.G., Gibson P.R., Veierød M.B., Henriksen C., & Lundin K.E.A. (2018). Fructan, Rather Than Gluten, Induces Symptoms in Patients With Self-Reported Non-Celiac Gluten Sensitivity. Gastroenterology, 154(3), 529-539.e2. Doi: 10.1053/j.gastro.2017.10.040.
Skrypnik K., & Suliburska J. (2018). Association between the gut microbiota and mineral metabolism. Journal of the Science of Food and Agriculture, 98(7), 2449-2460. Doi: 10.1002/jsfa.8724.
Steinbrenner H., Duntas L.H., & Rayman M.P. (2022). The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biology, 50, 102236. Doi: 10.1016/j.redox.2022.102236.
Sultan N., Varney J.E., Halmos E.P., Biesiekierski J.R., Yao C.K., Muir J.G., Gibson P.R., & Tuck C.J. (2022). How to Implement the 3-Phase FODMAP Diet Into Gastroenterological Practice. Journal of Neurogastroenterology and Motility, 28(3), 343-356. Doi: 10.5056/jnm22035.
Tribst M.F., Magalhães L.R., Silva R.A., Caetano H.R. dos S., Oliveira W.G.A. de, Rufino M.N., Keller R., Sanches O. de C., Louzada M.J.Q., & Bremer-Neto H. (2019). Mineral composition, histomorphometry, and bone biomechanical properties are improved with probiotic, prebiotic, and symbiotic supplementation in rats chronically exposed to passive smoking: a randomized pre-clinical study. Ciência Rural, 49, e20180695. Doi: 10.1590/0103-8478cr20180695.
van Lanen A.-S., de Bree A., & Greyling A. (2021). Efficacy of a low-FODMAP diet in adult irritable bowel syndrome: a systematic review and meta-analysis. European Journal of Nutrition, 60(6), 3505-3522. Doi: 10.1007/s00394-020-02473-0.
Varvara R.-A., & Vodnar D.C. (2024). Probiotic-driven advancement: Exploring the intricacies of mineral absorption in the human body. Food Chemistry: X, 21, 101067. Doi: 10.1016/j.fochx.2023.101067.
Verstrepen L., Bekaert T., Chau T.-L., Tavernier J., Chariot A., & Beyaert R. (2008). TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme. Cellular and Molecular Life Sciences: CMLS, 65(19), 2964-2978. Doi: 10.1007/s00018-008-8064-8.
Weyh C., Krüger K., Peeling P., & Castell L. (2022). The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients, 14(3), 644. Doi: 10.3390/nu14030644.
Whelan K., Martin L.D., Staudacher H.M., & Lomer M.C.E. (2018). The low FODMAP diet in the management of irritable bowel syndrome: an evidence-based review of FODMAP restriction, reintroduction and personalisation in clinical practice. Journal of Human Nutrition and Dietetics: The Official Journal of the British Dietetic Association, 31(2), 239-255. Doi: 10.1111/jhn.12530.
Winther K.H., Rayman M.P., Bonnema S.J., & Hegedüs L. (2020). Selenium in thyroid disorders - essential knowledge for clinicians. Nature Reviews. Endocrinology, 16(3), 165-176. Doi: 10.1038/s41574-019-0311-6.
Yilmaz B., & Li H. (2018). Gut Microbiota and Iron: The Crucial Actors in Health and Disease. Pharmaceuticals (Basel, Switzerland), 11(4), 98. Doi: 10.3390/ph11040098.
Zakrzewska Z., Zawartka A., Schab M., Martyniak A., Skoczeń S., Tomasik P.J., & Wędrychowicz A. (2022). Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia. Microorganisms, 10(7), 1330. Doi: 10.3390/microorganisms10071330.
Zhou D., Zhao Y., Li J., Ravichandran V., Wang L., Huang Q., Chen C., Ni H., & Yin J. (2021). Effects of Phytic Acid-Degrading Bacteria on Mineral Element Content in Mice. Frontiers in Microbiology, 12. Doi: 10.3389/fmicb.2021.753195.
Zhou J., Cheng J., Liu L., Luo J., & Peng X. (2023). Lactobacillus acidophilus (LA) Fermenting Astragalus Polysaccharides (APS) Improves Calcium Absorption and Osteoporosis by Altering Gut Microbiota. Foods, 12(2), 275. Doi: 10.3390/foods12020275.
Zingone F., Bertin L., Maniero D., Palo M., Lorenzon G., Barberio B., Ciacci C., & Savarino E.V. (2023). Myths and Facts about Food Intolerance: A Narrative Review. Nutrients, 15(23), 4969. Doi: 10.3390/nu15234969.