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Abstract 

Our world is full of sounds, either verbal or non-verbal, pleasant or un-
pleasant, meaningful or simply irrelevant noise. Understanding, memorizing, 
and predicting the sounds, even non-verbal ones which our environment is 
full of, is a complex perceptuo-cognitive function that we constantly refine 
by everyday experience and learning. Musical sounds are a peculiar case due 
to their culture-dependent complexity and hierarchical organization requir-
ing cognitive functions such as memory to be understood, and due to the 
presence of individuals (musicians) who dedicate their lifetime to master the 
specifics of those sounds and rules. Thus far, most of the neuroimaging re-
search focused on verbal sounds and how they are processed and stored in 
the human brain. Only recently, researchers have tried to elucidate the neural 
mechanisms and structures allowing non-verbal, musical sounds to be mod-
eled, predicted and remembered. However, those neuroimaging studies often 
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provide only a mere snapshot of a complex dynamic process unfolding over 
time. To capture the complexity of musical memory and cognition, new 
methods are needed. A promising analysis method is dynamic functional 
connectivity, which assumes that functional connectivity changes in a short 
time. We conclude that moving from a locationist to a dynamic perspective 
on auditory memory might allow us to finally comprehend the neural mech-
anisms that regulate encoding and retrieval of sounds. 

Keywords: auditory memory, pattern recognition, brain spatiotemporal dy-
namics, dynamic functional connectivity, music neuroscience. 

Introduction 

Since we are born, and even earlier, we are immersed in a sound-
rich environment and even in a vacuum, we start hearing noises from 
our own bodies (Kolata, 1984; Parga et al., 2018). These sounds 
whether verbal or non-verbal, pleasant or unpleasant, meaningful or 
simply irrelevant noise, constitute the ever-changing stream impinging 
on our ears and brains and changing them continuously by neuro-
plastic processes. Thanks to these perceptual-learning and neuro-
plastic processes commencing even before birth, we possess a com-
plex perceptuo-cognitive function that allows us to understand, mem-
orize, predicting, recognize and finally attribute meaning to sounds 
(Brattico & Varankaite, 2019; Brattico, 2019; Gebauer, Kringelbach 
& Vuust, 2015; Hallam, 2018).  

Musical sounds are a peculiar case due to their culture-dependent 
complexity and hierarchical organization requiring several cognitive 
functions, such as memory and attention, to be understood. Moreover, 
since thousands of years human cultures and societies nurture and ed-
ucate individuals (musicians) who dedicate their life to master the spe-
cifics of those sounds and rules, resulting in highly specialized audi-
tory processing skills dependent on neuroplastic processes (Altenmül-
ler & Furuya, 2017; Brattico et al., 2021; Reybrouck, Vuust & Brat-
tico, 2018; Criscuolo et al., 2022). To date, however, the psychologi-
cal and neural mechanisms that permit learning, recognition and 
memory for complex musical sounds remain unclear.  

Most research conducted on learning and memory, though focused 
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on visual and spatial information, has been conducted initially on 
brain-damaged patients, such as the classical study of Brenda Milner 
(1966) on H.M. which presented a long-term (LTM) episodic memory 
deterioration because of the removal of scar tissue on the bilateral hip-
pocampus. Since the ’90s (designated as the “Decade of the Brain” by 
US President George W. Bush), studies on memory in healthy subjects 
have become possible thanks to functional techniques, such as mag-
netic resonance (fMRI), electroencephalography (EEG) or magne-
toencephalography (MEG). With these techniques, it was possible to 
investigate encoding, storage, retrieval, and predictive processes of 
mainly verbal or visuospatial information, with a small minority of 
studies on auditory non-verbal or musical information. While provid-
ing valuable information supporting and complementing knowledge 
previously obtained from brain-lesioned patients, the neuroimaging 
studies focused on regional brain activations, and static connections 
during memory tasks (Van den Heuvel & Hulshoff Pol, 2010), leaving 
it open the question on the dynamic fast network changes during 
memory processes for sounds evolving in time. In this review we wish 
to first provide an overview of neuroimaging findings on memory for 
musical sounds and then present the frontiers of research on dynamic 
connectome for music.  

Memorizing sounds over time: the peculiar case of music 

Based on the current literature, there is a scarcity of models focused 
on non-verbal auditory information, since most of the studies focus on 
visual, verbal or spatial memory. In the following sections we will 
briefly summarize the main theories that have been proposed to ex-
plain the storage mechanisms of non-verbal auditory and musical in-
formation, with a focus on different memory systems: sensory 
memory, working memory (WM) and long-term memory (LTM). 

Sensory memory has been measured for the first time by Sperling 
(1963) and subsequently integrated on the multi-store model of 
memory by Atkinson & Shiffrin (1968), a theory which postulates that 
sensory information (auditory information included) passes through 
sensory and short-term memory storages, before being lost (due to de-
cay or interference) or permanently consolidated on LTM (see also 
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Broadbent, 1958; Cowan, 1984, 1988), In relation to auditory sensory 
memory (or echoic memory), for example, it has been demonstrated 
that subjects are able to recognize differences between two similar 
sounds only when these sounds are presented less than 10 seconds 
from each other (Cowan, 1984), with a decline in performance when 
similar sounds are presented in between as interfering stimuli (Cowan, 
1984; Deutsch, 1975; Massaro, 1970). When sounds are separated by 
a silent period, subjects can compare them only when they are very 
different from each other. Such degradation of sensory signal appears 
to comply with the idea that once the memory trace related to the first 
sound is deleted by the sensory buffer, subjects can rely only on the 
store having a higher retention range. Store that, however, can contain 
sound information with much lower resolution than that of the sensory 
buffer. Most of these results have been obtained with classical para-
digms like, for example, the oddball task, which consists in the presen-
tation of repeated stimuli occasionally interrupted by a deviant stimu-
lus. 

WM (Baddeley & Hitch, 1974) is defined as the system behind 
complex cognitive abilities, a system on which cognitive processing 
and reasoning rely. Auditory WM allows not only to to recognize and 
to learn the various features of sound (e.g., pitch, tempo or timbre), 
but also to integrate them in a spectrally and temporally complex way, 
e.g., for consonance, tonality, rhythm, allowing understanding and ap-
preciation of music (Seashore, 1937). The classical experiments con-
ducted by Diana Deutsch (1999) demonstrated that auditory WM does
exactly that: it maintains different sound features, like timbre or pitch,
and recombines them for more advanced stages of cognitive pro-
cessing. One of the most used paradigms used in WM studies, includ-
ing auditory ones, is n-back of isolated sounds, in which a sequence of
stimuli is presented, and the subject is asked to indicate if the current
stimulus is the same or different to the stimulus presented N trials
back. Another very common paradigm for studying auditory WM is
the delayed response task, in which a stimulus is presented and then
extinct, and after a variable amount of time the same stimulus and a
similar one are presented to a subject, who is asked to identify the
original stimulus.

The longest-lasting and largest-capacity memory system is LTM. 
Numerous experiments have been conducted to understand which 
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sound features (e.g., pitch, rhythm, timbre) are most involved in the 
recognition of familiar melodies (for example, “Summertime” by G. 
Gershwin can be recognized simply from the few notes of the incipit). 
An experimental technique that is often utilized in music memory re-
search is “octave scrambling”, which consists in transposing a melody 
into different octaves while maintaining the order in which the differ-
ent pitches are presented (Deutsch, 1972). With this technique it was 
seen that what makes melodies recognizable is the maintenance of the 
contour, that is, the up and down patterns of the various pitches, even 
when the melodies are decomposed into different octaves (Dowling, 
1978).  

Auditory recognition, however, tends to be worse than recognition 
in the visual (Cohen, Horowitz & Wolfe, 2009) or tactile sensory mo-
dalities. Bigelow and Poremba (2014) have examined memory recog-
nition for visual (silent videos), auditory (complex sound of everyday 
life) and tactile (objects of common use hidden and presented in such 
a way that they can be touched and manipulated) stimuli, showing that 
auditory recognition is significantly worse than in other modalities, 
with no significant differences between visual or tactile stimuli. Cohen 
et al. (2009) have argued that auditory recognition is worse than other 
modalities due to our tendency to primarily rely on visual stimuli. This 
might explain why auditory recognition is weaker than visual recog-
nition even among musicians (Cauda et al., 2011).  

Despite the classical subdivision between sensory memory, WM 
and LTM, the formation of new musical memories is an extremely 
dynamic process, which is the outcome of real time listening and pre-
dicting: the notes that we recognize in a melody are continuously un-
folding and varying during listening and can be understood only based 
on the models and priors we have accumulated from life exposure to 
sounds (Dowling, Tillman & Ayers, 2002). Crowder et al. (1989) have 
conducted a study in which participants compared the pitches of a sine 
tone followed by a tone played by a musical instrument, evidencing 
that discrimination was faster the more familiar participants were with 
the timbre of the instrument. This might be due to the fact that LTM 
generates a mental image of the frequency of the pure tone as if it had 
been played in the timbre of the instrument used for the second sound. 
This and other findings inspired Cowan (1988, 1998, 1999) to propose 
that long-term memory consists of specialized subsystems or 
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activation mechanisms that process (auditory) sensory features of the 
stimulus alongside its long-term categorical representation. Although 
Cowan’s models assume that some sensory features are maintained for 
longer periods of time, they do not explain the apparent contradiction 
between the classical findings on the limitations in accessing sensory 
information and its long-term retention. Even for recall, the melodies 
are never perfectly remembered note by note, but small variations are 
often produced, which remain metrically and harmonically coherent 
with the original (Sloboda, 1985). Hence, episodic LTM for melodies 
consists in the memorization of abstract patterns in which not neces-
sarily all the superficial details are kept (Snyder, 2009). What remains 
of these details, however, has been a long controversial topic. Some the-
ories are based on the idea of the importance of hierarchical structures, 
in which some musical events are structurally more important than oth-
ers (Deutsch & Feroe, 1981; Lerdahl & Jackendoff, 1983). Most of 
these theories suggest that segmentation (a process which underlines the 
organization of musical events into groups) is a fundamental aspect for 
the creation of a long-term representation (Deliège, 1987).  

A novel theory of brain function which has relevance also for music 
perception and memory studies is predictive coding theory (PCT), a 
Bayesian mathematical model of neural mechanisms initially used for 
visual perception (Rao & Ballard, 1999) and subsequently used to the 
prediction of behavior (Fitzgerald, Dolan & Friston, 2014). PCT con-
cerns the hierarchical neuroarchitecture that allows and makes sense 
of the external or internal environment. When applied to music, PCT 
represents an attempt to understand how the human brain predicts, un-
derstands and memorizes sounds. 

Predictive coding is based on the bidirectional flow of information 
in a hierarchical neural network (Friston, Stephan, Montague & Dolan, 
2014), and, applying it to auditory perception, postulates how the suc-
cession of sounds is recorded and compared with pre-existing models 
which, if these sounds do not correspond to the models, are updated 
from time to time (for a review, cfr. Koelsch, Vuust & Friston, 2019). 
The higher representation units send their predictions to the lower 
units. The bottom-up input is compared with these top-down predic-
tions and if there is a match between the input and the prediction, a 
suppressed neural response (which corresponds to the passive sensory 
adaptation mechanism) is obtained. Conversely, a mismatch causes a 
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prediction error response, measured with electroencephalography or 
magnetoencephalography as the mismatch negativity (MMN), which 
is projected back to the higher level (Kanai et al., 2015). These neuro-
logical processes driving optimum deviant identification fluctuate ac-
cording to gene-determined catecholamine levels in the brain, accord-
ing to Bonetti et al. (2021a). As Vuust et al. (2022) state, a key concept 
in PCT is the idea that prediction mistakes are weighted by their pre-
cision (predictability). In other words, the brain must choose the pre-
diction errors that drive Bayesian belief updating and the top-down 
predictions that follow. This can be thought of as a type of covert or 
mental action that gives ordinary predictive coding systems an active 
and attentional component. These theoretical models have mainly 
sought empirical confirmation in locationist research, including stud-
ies focused on the MMN brain response, which will be illustrated in 
the following section. 

 
 

Locationist research on the neural bases of sensory memory for 
musical sounds 

 
A deep understanding of non-verbal, and specifically, musical au-

ditory memory requires the identification of its neural substrates and 
the mechanisms involved. For this purpose, the research with neuroim-
aging methods is crucial, as also highlighted in the most recent manu-
als of general psychology and memory (e.g., Baddeley, Eysenck & 
Anderson, 2020; Gatti & Vecchi, 2021). It should be noted, however, 
that neuroscience and neuroimaging studies have focused too mainly 
on the coding and recognition of visual, spatial (Aggleton & Brown, 
2006; DiCarlo, Zoccolan & Rust, 2012) and verbal information than 
auditory ones. In the following sections we will review the few studies 
in the literature on the neural correlates of memory for musical sounds, 
starting from systemic neuroimaging studies, then moving on to neu-
rophysiology studies to conclude with studies on dynamic functional 
connectivity. 

In the sensory span, predictive processes, traditionally referred to 
as echoic memory processes, rely on interconnected neural structures 
that go from the peripheral to the central nervous system, namely the 
acoustic nerve, the primary and associative auditory cortex, the 
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superior temporal gyrus, the insula and the inferior frontal gyrus 
(Kanai et al., 2015; Näätänen et al., 2001; Tervaniemi & Hugdahl, 
2003; Zatorre, 2003). 

Neurophysiological research has demonstrated the coexistence of 
different mechanisms for coding and storing simple sound sequences 
by activating the aforementioned brain areas. The neurophysiological 
responses at the level of the auditory cortex adapt and attenuate with 
the repetition of tones in a sequence, at least until a new tone is intro-
duced, as occurs with the oddball paradigm. This dampening of neu-
ronal response related to forming predictions and the opposite en-
hancement related to signaling a change or error in expectation are 
studied by recording the mismatch negativity (MMN) and the N1 or 
N100, two kinds of brain responses evoked by stimuli, by means of 
EEG and MEG (Brattico, Näätänen & Tervaniemi, 2001; Brattico, 
Tervaniemi & Picton, 2003; Brattico et al., 2009; Näätänen, Gaillard, 
& Mäntysalo, 1978; Näätänen et al., 2007; Vuust et al., 2011; Vuust 
et al.,, 2012). MMN reflects the formation of a neural representation 
of standard sound to which the deviant sound is related (Näätänen & 
Winkler, 1999): without this standard predictive sound encoding, no 
MMN could be generated (Cowan et al., 1993). MMN is generated 
both in the primary auditory cortex (Alho et al., 1986; Hari et al., 
1984; Kropotov et al., 1995; Sams et al., 1985) and in the frontal lobe 
after the attention switching that follows the stimuli changing, as pro-
posed by Näätänen and Michie (1979) and then confirmed by various 
studies (e.g., Giard et al., 1990; Rinne et al., 2000).  

Using a multi-feature MMN paradigm, Kliuchko et al. (2019) dis-
covered that active listening experience in professional musicians en-
hances neuronal prediction errors above and beyond the effect of just 
listening to music. In particular, they observed larger MMN ampli-
tudes, indicating a stronger brain response to violated priors, in jazz 
musicians (but not in classical musicians) as compared to non-musi-
cians or amateurs. Participants who were not musicians but who loved 
jazz music, instead, showed a reduced MMN to pitch slide (a common 
feature in jazz music). These results suggest that priors learned from 
active vs. passive engagement with a musical style shape the auditory-
cortex responses to deviations of spectral features (such as timbre, 
pitch and slide) inserted in an ever-changing fast musical sequence. 
For example, professional jazz musicians display a more accurate 
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neural discrimination of pitch, pitch slide, timbre and intensity 
changes, as indexed by the MMN response. Furthermore, a higher 
preference for a musical style in non-musicians or amateurs was asso-
ciated with a reduced MMN response to pitch slide, which is the op-
posite to the effect of music playing experience in the same popula-
tion. This suggests that active experience of a musical style is crucial 
for developing accurate priors and consequently an enhanced auto-
matic neural discrimination of the sound features of the preferred style, 
in contrast to a passive experience of it (Kliuchko et al., 2019). 

Thanks to the MMN it was discovered that the human brain is more 
efficient in discriminating frequency changes between sounds if the 
sound spectrum is complex. In particular, Tervaniemi et al. (1993) 
have discovered that the MMN amplitude to the same amount of fre-
quency changes increases, and the latency is reduced while using pi-
ano sounds compared to simple (sinusoidal) tones. Along the same 
line, Tervaniemi et al. (1997) have demonstrated how pitch changes 
were detected more accurately and evoked a larger MMN with a 
shorter latency when sounds had a richer spectrum than with sinusoi-
dal tones. Hari et al. (1992) compared MMNm (that is the magnetic 
equivalent of the electric MMN) in response to frequency changes of 
isolated sinusoidal tones with that to changes within paired tones, dis-
covering a stronger MMNm in the latter case. According to the au-
thors, these results demonstrate that the strength of memory traces de-
pends on the complexity of the stimuli. 

MMN can be generated by two distinct mechanisms: the first is 
called “passive sensory adaptation” or “neuronal refractoriness” to in-
dividual tones and occurs after prolonged exposure to repetition of 
stimuli or sound features (Brattico et al., 2003). The second one is the 
«predictive coding based on the probability of transition between 
tones» (Dehaene et al., 2015). Therefore, from the studies listed above 
it emerged that brain anticipates better the errors in the case of com-
plex sounds, but it was also seen how this ability is more evident in 
musicians than in nonmusicians (Brattico et al., 2009; Koelsch, 
Schröger & Tervaniemi, 1999; Vuust et al., 2012). In a similar way, 
Brattico et al. (2001) reported a shorter left-lateralized MMN latency 
to familiar tone patterns than unfamiliar ones, suggesting that musi-
cians have faster neural mechanisms in the left hemisphere to process 
pitch pattern changes, probably thanks to daily musical training with 
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that type of sound material. Further studies have been then conducted: 
Tervaniemi, Huotilainen & Brattico (2014) found that when folk mu-
sicians were compared to non-musicians, the MMN was larger for 
mistuned sounds, possibly as a consequence to the central role of mel-
ody and pitch in Finnish folk music. Furthermore, Quiroga-Martinez 
et al. (2019) discovered that high-entropy stimuli, consisting of a set 
of non-repetitive melodies, had lower MMNm amplitudes for pitch 
and slide deviants than low-entropy (LE) stimuli, consisting of a sim-
ple, repetitive pitch pattern. These findings are consistent with predic-
tive coding theories (Clark, 2013; Feldman & Friston, 2010; Hohwy, 
2012) and models of musical expectations (Hansen, Dietz & Vuust, 
2017; Ross & Hansen, 2016; Vuust et al., 2018) which propose that 
prediction error responses are reduced in contexts with low as com-
pared to high predictive precision. This study confirms that precision 
of auditory (musical) models affect prediction error while listening. 

In sum, MMN studies demonstrated neural mechanisms for sensory 
predictions of music in the short-term, as affected also by long-term ex-
perience and second-order predictions, helping us to understand how 
the human brain processes auditory information from the environment. 

Working memory for music and its neural correlates 

Few recent fMRI studies using verbal and non-verbal auditory 
stimuli have revealed that WM for sounds activates areas such as the 
frontotemporal gyrus, the supramarginal regions and the cerebellum 
(Gaab et al., 2003). An fMRI study by Schulze et al. (2011) investi-
gated the neuroanatomical correlates of verbal and musical WM in re-
lation to music training and found that WM-related neural structures 
namely the Broca’s area, motor and premotor areas, the left insular 
cortex and the inferior parietal lobe, were activated for both verbal and 
tonal n-back tasks, with no significant differences between musicians 
and non-musicians. Furthermore, specific areas were activated in the 
musicians’ brains either only during verbal n-back tasks (right insular 
cortex) or only during tonal n-back tasks (right globus pallidus, right 
caudate nucleus and left cerebellar hemisphere). These findings sug-
gest the existence of two WM systems in musicians: a phonological 
loop and a tonal loop (Schulze et al., 2011). 
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Pallesen et al. (2010) measured the metabolic activity of the brain 
(blood-oxygen level dependent or BOLD signal) in musicians and 
nonmusicians during an n-back task with musical chords transposed 
over several octaves in order to determine the relationship among per-
formance, musical proficiency, and overall enhanced cognition. From 
this study it emerged that musicians had a better performance in WM 
tasks than nonmusicians, and as WM load increased, musicians 
demonstrated higher increases in BOLD brain responses than non-mu-
sicians, replicating the well-known association between WM load and 
task performance (Baddeley, 1986; Just & Carpenter, 1992; Sternberg, 
1969). The study also suggests that superior WM task performance in 
musicians rely on an enhanced ability to exert sustained cognitive con-
trol, which may be a consequence of focused musical training. Fur-
thermore, Salmi et al. (2010), using the same dataset as Pallesen et al. 
(2010) demonstrated that this load increase in a musical WM task is 
associated with enhanced brain activity in the parietal, dorsal premo-
tor, and lateral prefrontal cortices as well as lobules VII–VIII of the 
posterior cerebellum, while on the contrary the 0-back sensory-motor 
task activated the motor/somatosensory, medial prefrontal, and poste-
rior cingulate cortices and lobules V/ VI of the anterior cerebellum, 
suggesting that the posterior cerebellar activation during a demanding 
cognitive task is involved with optimization of the response speed. 

In the studies mentioned above, WM was studied using controlled 
button-press tasks with simple musical stimuli, that likely generate 
mental states that are different from those emerging from real-life lis-
tening situations. To overcome this limitation, Burunat et al. intro-
duced the naturalistic paradigm in musical memory studies by means 
of fMRI (Burunat et al., 2014). Two different experiments were con-
ducted within the same study. A first experiment was a listening test 
with musicians and amateurs and the piece “Adios Nonino” by Astor 
Piazzolla. This experiment was functional to identify segments of the 
piece that were used as regressors for the analysis of an fMRI experi-
ment, in which a separate group of musicians listened freely and at-
tentively to the same musical piece without any interruptions. The sta-
tistical maps of the t-tests between the repetition of the motifs and their 
first presentations showed activations of brain regions related to WM 
for the musical motifs: hippocampus, basal ganglia, dorsolateral pre-
frontal cortex (PFC) and cerebellum (Figure 1). These results not only 
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replicated previous studies on musical WM where artificial sequences 
or isolated chord cadences were presented to the participants but high-
lighted the role of the hippocampus, never clearly found in a musical 
memory neuroimaging experiment. No activations of the supratem-
poral auditory regions emerged since sensory coding processes were 
excluded from the main analyses by using covariates.  

Figure 1. Left and right lateral ([a] [d]) and mid-sagittal ([b] [c]) views of the 
thresholded statistical map displaying positive (red) and negative (blue) correlations 
with the WM regressor. The hippocampal activation is indicated in the left hemi-
sphere. Figure reproduced with permission by Burunat et al. (2014). Dynamics of 
brain activity underlying working memory for music in a naturalistic condition. Cor-
tex, 57, 254-269. Copyright Elsevier. 

Further studies using the naturalistic free-listening paradigm were 
conducted also with MEG and EEG methods. These studies were 
aimed at extracting transient evoked cortical responses to musical fea-
tures during realistic listening. Haumann et al. (2021) discovered that 
naturalistic P1/N1/P2 transient evoked cortical responses (ERs) can be 
extracted with high reliability at sound onsets in real musical pieces, 
and that naturalistic P2 responses are localized to core cortical regions 
of the auditory cortex. P1/P2 responses were shown to be predominant 
in monophonic/homophonic passages of the music (piano solos), 
whereas N1 responses were only detectable in the polyphonic parts 
with the whole orchestration. The authors observed that the P2 re-
sponses were evoked by increases in the acoustic features of intensity 
and spectral flux, which are commonly used to locate the onset times 
of syllables in speech and the onsets of tones in musical pieces (Alías 
et al., 2016). This result can be interpreted according to many theories, 
such as predictive coding but also superposition, refractoriness or ha-
bituation (Heilbron & Chait, 2018). Predictive coding theory may ex-
plain the lack of measurable early brain responses to repeated stimuli 
(Bendixen, Schröger, & Winkler, 2009; Brattico, Bogert & Jacobsen, 
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2013; Herrmann et al., 2015; Todorovic et al., 2011; Vuust et al., 
2009; Winkler, Denham & Nelken, 2009), as well as the hypothesis of 
stimulus-specific habituation and dishabituation (Butler, 1968, 1972a, 
1972b; Fruhstorfer, Soveri & Järvilehto, 1970; Graham, 1973; Gu et 
al., 2018; Loveless, 1983; Megela & Teyler, 1979; Näätänen & Picton, 
1987; Näätänen et al., 1988; Öhman & Lader, 1977; Picton et al., 
1978; Thompson & Spencer, 1966; Thompson & Groves, 1973; 
Woods & Elmasian, 1986). The superposition hypothesis focuses on 
overlapping cortical responses in M/EEG waveforms, which are com-
monly observed in fast rate events (Simon, Balla, & Winkler, 2019; 
Tan et al., 2015), so the sum of the overlapping response waveforms 
will result in cancellation or summation between the overlapping pos-
itive and negative evoked potentials or fields. The observed lower (or 
higher) response amplitudes might be accounted for by this destructive 
(or constructive) interference. However, it has been noticed that the 
superposition hypothesis is insufficient for characterizing additional 
amplitude changes across inter-onset intervals stimuli (IOI) in studies 
where fast steady-state responses (SSR, with periodic stimulation 
greater than 1 Hz) have been simulated by increasing the rate of over-
lapping cortical ERs (P1/N1/P2) (Tan et al., 2015). SSR phenomenon 
supports the theory of “stimulus-specific entrainment” posing that the 
spontaneous cortical oscillations of neuronal assemblies lock to the 
environmental stimuli modulating power of oscillations according to 
the exogenous frequencies (e.g., Brenner et al., 2009).  

A further explanation of cortical memory processes is represented 
by the cortical refractoriness theory, stating that over a ten-second re-
covery time, a group of stimulated cortical neurons reacting to a stim-
ulus becomes less receptive (Brattico et al., 2003; Zacharias, König, 
& Heil, 2012). This “passive adaptation effect”, also known as “neural 
fatigue”, is thought to be a mechanism that “boosts sensory systems” 
processing efficiency (Grill-Spector, Henson, & Martin, 2006). The 
excitability of cortical neurons is progressively restored throughout 
this recovery phase. The auditory cortex neurons have a shorter time 
to fully recover their excitability when the sound elements of interest 
are presented with shorter IOIs. As a result, cortical excitability would 
be reduced, as would the amplitudes of cortical ERs. Nonetheless, the 
cortical refractoriness theory has been questioned by new findings in-
dicating the role of expectancies (or “predictions”) (Costa-Faidella et 
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al., 2011; Euler & Ricci, 1958; Pearce et al., 2010; Serkov, Leonova 
& Shelest, 1969; Todorovic et al., 2011).  

Long term musical memory and its neural correlates 

Numerous studies have tried to investigate musical LTM in Alz-
heimer’s disease (AD), a type of dementia that primarily affects 
memory, thinking and behavior, to evaluate residual abilities. For in-
stance, Lola Cuddy’s studies suggest that some sort of LTM for music 
is preserved in most cases of AD patients (Vanstone & Cuddy, 2009). 
Further studies have made it possible to advance the hypothesis that 
explicit musical memory is impaired in most AD cases, supporting the 
notion that the brain regions most affected since the early AD stages ‒ 
particularly the frontal lobe ‒ mediate this kind of memory. What 
seems to be preserved is implicit memory, which in musicians corre-
sponds to the procedural memory of playing an instrument, suggesting 
how AD does not fully compromise these brain functions and support-
ing the distinction between explicit and implicit musical memory 
(Baird & Samson, 2009). Moreover, music has been demonstrated to 
facilitate autobiographical memories in AD patients (Peck et al., 
2016). In particular, Irish and colleagues (2006) discovered that total 
autobiographical recall was considerably better in the music than in 
the silent condition when comparing the influence of background mu-
sic against a silent testing condition on autobiographical memory in 
people with moderate Alzheimer’s disease. Furthermore, García et al. 
(2012) presented samples from several kinds of music, including joy-
ful music, sad music, new music, and industrial noise, to see if the 
observed benefits in autobiographical memory in AD patients are mu-
sic-specific. When compared to all other conditions, autobiographical 
memory was considerably improved when exposed to sad music, but 
only for recall of remote memories and not for recent memories. The 
authors propose that it is not the music itself that enhances remote au-
tobiographical memory recall, but rather the emotion that goes along 
with it, and that the ability of music to specifically promote recall of 
distant rather than recent autobiographical memories may be signifi-
cant in restoring a sense of identity. These findings have then been 
confirmed by another study by Cuddy et al. (2017), showing that the 
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presence of song lyrics or even favorite music is not required to elicit 
autobiographical memories; rather, “pure” instrumental music that is 
widely known in the culture is sufficient. Regardless of this, listening 
to favorite music elicits a specific activation of the supplementary mo-
tor area, which has been linked to memory for familiar music and is 
often spared in early AD (King et al., 2019). Following the presenta-
tion of preferred musical stimuli, King and colleagues discovered 
widespread increases in functional connectivity in corticocortical and 
corticocerebellar networks, indicating a transient impact on brain 
function and supporting a mechanism through which attentional net-
work activation in the brain’s salience network improves brain net-
work synchronization.  

Another study by Johnson et al. (2011) propose to compare music 
recognition in a clinical population with various types of dementia 
(i.e., AD, frontotemporal and semantic dementia), and results have 
shown how patients with semantic dementia had considerable diffi-
culty naming familiar melodies and also scored the lowest when asked 
to identify pitch errors in the same melodies, suggesting that naming 
familiar melodies is strongly related to measures of semantic memory. 
After that, voxel-based morphometry analysis of AD brains revealed 
that an impairment in naming songs was linked to the bilateral tem-
poral lobes and inferior frontal gyrus, whereas difficulty detecting 
pitch errors in familiar melodies was linked to alterations in the right 
temporal lobe. These findings suggest that the anterior temporal lobes 
are involved in the memory system for melodies, and that musical 
functions are impacted differently in different types of dementia. 

More recently, further studies have been conducted to better inves-
tigate the role of different areas for the recognition of complex musical 
patterns: for this purpose, Bonetti et al. (2021b) combined MEG and 
MRI, discovering a dual processing brain mechanism. The single tones 
forming the patterns were independently elaborated by a rapid, oscil-
latory, local processing driven by the auditory cortex. The combina-
tion of those single tones into a meaningful superordinate pattern, in-
stead, seems to depend on a simultaneous global, slow processing that 
also involves a widespread network of sequentially active high-order 
brain areas largely related to audition, memory, attention and decision-
making, i.e., the hippocampus, cingulate gyrus, inferior temporal cor-
tex, frontal operculum, insula (Bonetti et al., 2021b). 
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In another MEG study (Fernández-Rubio et al., 2022), 71 partici-
pants first listened for a few times to a prelude in C major by J. S. Bach 
as well as to an acoustically and structurally matched atonal piece and 
then had to recognize if 5-tones patterns were previously heard or not 
(old/new task). Results showed that the superior behavioral recogni-
tion for tonal patterns that were previously heard and memorized was 
supported by memory-related brain areas such as the left hippocampus 
and cingulate. In turn, the worse recognition of atonal patterns acti-
vated only an auditory temporal network. Due to its binding function, 
the hippocampus involved in recognition memory for tonal sounds 
might be related to a wide range of situations involving auditory in-
formation, such as integrating acoustic features into a perceptual 
whole, anticipating the continuation of sound sequences, and “mental 
navigation” along sequences of auditory stimuli (Billig et al., 2022).  

From locationism to the static connectome 

In the search for the neural basis of memory, studies in the field of 
neuropsychology, with brain-damaged patients, and neuroimaging, 
with fMRI, have allowed to isolate the contribution of each brain re-
gion, albeit at a low temporal resolution, since the fMRI signal sum-
marizes the BOLD signal over the course of a few seconds. A better 
temporal resolution useful to studying the unfolding of auditory 
memory traces following one another at a very fast rate can be ob-
tained with neurophysiological techniques such as EEG and MEG. 
Although these techniques have a very detailed temporal resolution, at 
a spatial level the source reconstruction of the neural sources originat-
ing the MEG/EEG responses to sounds are typically limited to re-
gional activity, and specifically often only to the bilateral auditory cor-
tex. Hence, these studies can be described as “locationists” for their 
intent to map memory functions in specific structures of the central 
nervous system. In the last decade, the locationism approach has been 
complemented by a novel, dynamic approach that shows the synchro-
nous interaction of various brain structures for the formation and cod-
ification of sound memories, as will be illustrated later. However, the 
analysis of single brain regions provides an incomplete picture of brain 
functions and mechanisms.  
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The latest viewpoint balances integration and segregation, conceiv-
ing the relation between structure and function as based on dynamic 
communication among brain areas, hence emphasizing the need for 
imaging the fiber tracts and for computing correlations between neural 
responses from different locations of the brain in, respectively, struc-
tural or functional connectivity (FC) studies (Sporns, 2012). Structural 
connectivity among brain regions seeks physical connection networks 
in the brain. In turn, static FC highlights activation similarities be-
tween brain regions regardless of the anatomical connections between 
them.  

According to the FC approach, the interactions between circuits and 
regions of the brain are examined, quantifying whether the fluctua-
tions in neuronal activity originating from each region are correlated 
over time. The frequencies at which these fluctuations have the great-
est power during WM tasks are between 4 and 8 Hz, especially in the 
hippocampus and prefrontal regions (Tesche & Karhu, 2000). In the 
study by Burunat et al. (2014), a PPI (Psychophysiological Interac-
tions) analysis was conducted, revealing not only the modulatory ef-
fects of WM on FC patterns, but also how most of the areas relevant 
to WM (left hippocampus, putamen right, right caudate nucleus and 
right frontal gyrus) seem to function independently during WM tasks, 
possessing intrinsic FC related to listening to motifs that has been al-
ready presented. Neural connections related to musical memory have 
been measured even in the brain of babies in two recent studies 
(Lordier et al., 2019; Loukas et al., 2022). By comparing the resting 
brain activity of infants who had listened to familiar music for ten 
minutes a day, for several weeks, an intrinsic static FC was found be-
tween regions of the auditory cortex, and then between orbitofrontal 
cortex and motor regions, as well as between amygdala and thalamus 
in the right hemisphere, therefore, between areas linked to the encod-
ing of emotional memories. 

 
 

From static to dynamic connectivity: the temporal evolution of 
brain memory networks 

 
Advanced analytical methods can measure the “effective connectiv-

ity”, which quantifies the causal influence of one area over another, as 
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well as how connectivity varies based on task variables (Buckner, 
Krienen & Yeo, 2013; Fornito & Bullmore, 2012). In a study conducted 
by Lumaca et al. (2021), for example, effective connectivity was meas-
ured during the learning of complex tone patterns using dynamic causal 
modeling on fMRI data. The results of the study showed a decrease in 
inhibitory connectivity within left Heschl’s gyrus and an increase in 
feedforward connectivity from the left Heschl’s gyrus to planum tem-
porale during the presentation of deviant stimuli, suggesting that com-
plex auditory prediction errors are encoded by changes in feedforward 
and intrinsic connections, confined to the superior temporal gyrus).  

Effective connectivity as well as static FC, however, provide only 
a snapshot of the brain processes related to a task. When a task evolves 
over time, as in the case of music, it becomes necessary to adopt a 
dynamic approach, which allows the evaluation of the passage of in-
formation through the various neural systems, from coding to retention 
and recovery, in a dynamic process that develops temporally. 

In the last few years, a totally new approach called “dynamic con-
nectome” has emerged. This approach derives from the observation 
made by scientists who have found how the FC networks changed sig-
nificantly according to the brain state of the participants, such as sleep, 
mental tasks and learning, and even during the course of the same ex-
perimental session, correlating with the behavior (for a review, cfr. 
Leopold & Maier, 2012). Thanks to the work of scientists like Olaf 
Sporns, Danielle Bassett, Edward Bullmore, Gustavo Deco and 
Morten Kringelbach, methods of physics of complex networks have 
been introduced in cognitive neuroscience to analyze changes in the 
FC, giving rise to the new approach called «dynamic functional con-
nectivity» (DFC).  

By DFC we refer to the phenomenon according to which FC 
changes in a short period, and it is a recent expansion of traditional FC 
analysis which generally assumes that functional networks are static 
over time (Allen et al., 2014; Calhoun et al., 2014; Hutchison et al., 
2013; Sakoğlu et al., 2010). It has recently been suggested that DFC 
is a more accurate representation of functional brain networks, which 
evidences in a better way neurological and psychiatric disorders than 
static FC (Zhao et al., 2020). The main instrument to measure DFC is 
the fMRI. Nevertheless, fMRI measures metabolic changes of the 
BOLD signal in a very different time scale compared to the 
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electrophysiological measurements of neural synchrony obtained on 
animal models, or with EEG or ECoG (electrocorticography) on hu-
mans. Therefore, due to the slow time course of the BOLD signal, the 
FC resulting from fMRI can only quantify the correlations that occur 
at frequencies below 0.1 Hz (Fox & Raichle, 2007), allowing to par-
tially highlight the temporal development of a complex dynamic pro-
cess such as that related to auditory memory. On the other hand, elec-
trophysiological recordings typically measure synchrony at frequen-
cies between 1 and 100 Hz, and for this reason DFC studies on the 
MEG signal have been published in recent years (Bonetti et al., 2020; 
Bonetti et al., 2021c; Bruzzone et al., 2022). 

To obtain DFC from signals that are fMRI or MEG, the “correla-
tion-based sliding window” analysis is usually used (for a review, cfr. 
Preti et al., 2017), which was introduced for the first time by Sakoğlu 
et al. (2010) in a schizophrenia study. This approach consists in cor-
relating fMRI signals between distinct brain regions with a predefined 
number of time points that form a “window”. This defined window is 
then moved a certain number of scans forward in time and then an 
additional analysis is performed, which reflects the presumed tem-
poral changes associated with the spontaneous activity of brain net-
works. Another and more recent approach is Instantaneous Phase Syn-
chrony (IPS; Omidvarnia et al., 2016), which compares the phase an-
gles for each voxel or brain region (depending on the area of interest) 
at each individual time point, thus providing the same temporal reso-
lution as the original fMRI data. 

For the first time, the dynamics of the formation of memory traces 
and of the recognition of musical sounds through DFC have been stud-
ied during the recall of sound patterns learned during the experimental 
session (Bonetti et al., 2020). The sample of 70 participants, made up 
of musicians and non-musicians, was required to listen carefully for 
10 minutes of the Prelude in C minor BWV 847 by J. S. Bach. During 
a subsequent MEG measurement, an excerpt from the Prelude they 
had previously listened to, or a new variation pattern also by Bach, 
were presented to the participants. Aim of the study was to find the 
brain sources of the differences between the condition in which the 
Bach pattern was recognized and the conditions in which the new var-
iation occurred, by calculating the dynamic brain connectivity be-
tween all neocortical regions. From DFC analysis, it emerged that the 
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hippocampus, the cingulate gyrus and the PFC are more connected to 
the rest of the brain when the incoming stimuli correspond to the pre-
diction (Bach original), while the auditory cortex appears more central 
(mainly connected with the motor cortex and dorsolateral PFC) to in-
dicate the violation compared to prediction (while listening to the 
Bach variation).  

Hence, the novel DFC approach adopted in the study by Bonetti et 
al. (2020) allowed to examine not only the previously-observed hip-
pocampal and frontal involvement in musical memory but also the in-
volvement of brain structures such as the insula, frontal operculum and 
basal ganglia, which play a role both in the classification of salience 
of the stimuli and in the detection of prediction errors during listening 
(Cauda et al., 2011; Limongi et al., 2013; Uddin, 2015). 

Conclusion 

To summarize, we argue that the recent technical developments al-
low us to move away from a locationist approach towards understand-
ing the dynamic organization of the fast-changing connections be-
tween brain areas during the various memory stages: from encoding to 
consolidation and recall. As Bassett and colelagues pointed out (2011), 
learning and memory require “rapid adaptation to an ever-changing 
environment”. Only neuroimaging methods that consider the dynam-
ics of brain activity and connectivity will be effective in describing 
learning and memory in relation to an ever-changing, complex envi-
ronmental stimulus such as music. 
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