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SUNTO — Si ripropone uno studio dell’esistenza di soluzioni collineari del problema degli
N corpi, come trattato da Eulero e Lagrange. Si segue la traccia proposta da Newton nei
Principia, ossia considerare il problema nella sua generalita, senza assumere che la forza di
attrazione dipenda dall’inverso del quadrato della distanza. Si mostra che in generale esistono
orbite concentriche circolari, ovvero equilibri relativi. Per contro, si mostra che esistono orbite
omografiche solo se le forze sono potenze della distanza.
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ABSTRACT — We revisit the problem of collinear solutions of the problem of /N bodies,
as investigated by Euler and Lagrange. Unlike most existing studies, we consider a general
class of attractive forces. In this respect, we follow Newton’s attitude in Principia of first con-
sidering the problem in its generality, without assuming that the force obeys the gravitational
inverse square law. We find that circular concentric orbits, also named relative equilibria, exist
as a general fact. Conversely, we show that homographic orbits do exist only for forces that
obey a power law.
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INTRODUCTION AND STATEMENT OF RESULTS

The aim of this paper is to revisit the study of collinear solutions of the
problem of N bodies interacting through general force fields, not restricted
to the case of Newton’s gravitational force.
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Collinear solutions of the problem of three bodies have been investigated
by Euler (Euler 1766; Euler 1767; Euler 1770). He openly recognized that a
complete study of the problem of three bodies was inaccessible to his meth-
ods of Analysis. Therefore, Euler decided to begin with the simplified case
of motion on a line. This included, in particular, a possible motion of the
Moon on a state of perpetual alignment on syzygy. The first wide-scale study
is due to Lagrange (Lagrange 1772), who succeeded in writing equations for
the mutual distances among the bodies. He focused on the search of solu-
tions such that the mutual distances, or at least the ratios between any two
of them, remain constant. This is indeed the class of solution called rela-
tive equilibria and homographic orbits, respectively. In addition to Euler’s
collinear solutions, Lagrange also discovered the triangular solutions: the
bodies are located at the vertices of an equilateral triangle, which revolves
in space. A generalization of the collinear solutions of Euler and Lagrange
has been found by Forest Ray Moulton (Moulton 1910). An extension to
the case of four bodies had been previously published by Rudolf Lehmann-
Filhés (Lehmann—Filhés 1891).

Our interest in collinear solution is connected with paper (Giorgilli and
Guicciardini 2021). As discussed there, Newton made an accurate study
before making the conclusion that the gravitational force obeys the inverse
square law, with particular attention to forces obeying a power law. However,
the great majority of papers on collinear, or planar stationary, or homographic
orbits, consider only Newton’s gravitational law. Thus, if only for pure aca-
demic interest, we take the attitude of considering a more general class of
forces. As a first step, we focus our attention on collinear orbits, as Euler did.
However, a similar investigation may be extended also to generalizations of
Lagrange’s triangular solutions, for instance polygonal configurations, that
have been studied, for instance, in (Wintner 1941), and then in many papers.
An extensive exposition concerning recent works, with many references, may
be found in (Moeckel 2014; Saari 2005; Saari 2011).

Let us come to the statement of our results. We assume that the force
function ¢(r) satisfies the following hypotheses:

(H1) The intensity of the force is written as mm/(r), where r > 0 is the
distance between any two bodies and m, m’ are the masses.

(H2) The function ¢(r) is assumed to be positive, continuous and monoton-
ically decreasing for increasing r, with ¢(r) — 0. Both cases, ¢(0)

r—+00
finite or ¢(0) = +o0, are allowed.
(H3) The function ¢(r) is a convex function; that is, for » < »’ and for
0 <X <1wehavep((1—X)r+Ar') < (1= X)p(r)+ Xp(r).
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It is an easy matter to prove that hypotheses (H2) and (H3) entail that for any
d > 0 and for r < r’ we have p(r) — p(r +0) > p(r’) — p(r’ + §). Later,
we shall need a more stringent assumption.
(H4) The force law is an inverse power of the distance, thus homogeneous;
that is, p(r) = r~* with0 < a < 3.

Here, the limits on the exponent « select a class forces which possess stable
circular orbits, as is usual in discussing the problem of central forces. We
note that our arguments apply to any negative power, but the cases selected
here are the physically interesting ones.

We prove the following two theorems. First, using hypotheses (H1)—(H3),
we prove the existence of relative equilibria.

Theorem 1. Let N masses my, ..., my be given, interacting with an attrac-
tive force (1), where r > 0 is the distance between two bodies. Assume that
() satisfies the hypotheses (H1)—(H3) just stated. Then there exist N!/2
collinear configurations of relative equilibrium, with the masses aligned on a
straight line which revolves with uniform angular velocity around the barycen-
tre.

The second theorem is concerned with the existence of homographic orbits
corresponding to the collinear equilibria. This is a more intriguing problem:
it requires some extra conditions on the forces.

Theorem 2. With the hypotheses of Theorem 1, let also hypothesis (H4) be
satisfied, namely o(r) = r~* with 0 < o < 3. Then, corresponding to every
collinear solution, there exists a family of homographic orbits, such that the
bodies remain aligned on a straight line revolving (non uniformly) around
the barycentre, and the ratio of the relative distances between any two bodies
remains constant.

The curious fact is that we should restrict the force to depend on a power
of the distance. This is indeed the condition found by Newton, when he was
answering the following two questions for the problem of central motion;
see (Giorgilli and Guicciardini 2021) for a transcription in our current math-
ematical language.

(1) 7o determine the motion of the apsidal line for orbits very close to a

circular one ((Newton 1686), Liber I, sectio I1X, problema XXXI).
(11) 7o find attractive forces such that the precession angle of the apsidal
line does not depend on the radius of the circular orbit.
Newton answers the first question for generic forces. Then he proves that the
second question possesses a positive answer in case the force obeys a power
law. Perhaps surprisingly, we need the same assumption.
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1. HOMOGRAPHIC ORBITS, CENTRAL CONFIGURATIONS

The problem of homographic orbits is enunciated as follows:

To find orbits such that in a barycentric frame the geometric
configuration of the bodies remains similar to itself during the
motion.

1.1. The equations in the planar case

We choose an absolute rectangular frame with origin in the barycentre.

The coordinates x1, ..., X of the bodies obey Newton’s equations
.. X; — Xg .
(1) miX; ==Y mympp(rig)——, j=1,...,N,
K4j Tk

where 7; . = ||X; — X||. The equations possess the classical first integrals of
the barycentre, total momentum and total angular momentum:

N N N
(2) ijXjIO, ijszo, ZXj/\Tnjf(j:F.
j=1 j=1 j=1

Now we assume that the orbits lie on a fixed plane orthogonal to I', so that
in a rectangular frame with the z axis parallel to I' we have z; = 0. Let
&1,...,&n be N fixed vectors in the orbital plane.

Homographic orbits are represented as

cosf) —sinf
(3) Xj = 0Re&j . Ro= (sin@ cos 9)
where o(t), 0(t) depend on time. We distinguish three cases.

(i) A relative equilibrium occurs if o(t) = po remains constant. In this
case the bodies revolve on circles around the barycentre, all with the
same angular velocity # = w. In a revolving frame with angular ve-
locity w the bodies remain fixed.

(i1) A homothetic orbit occurs when 0(t) = 6 remains constant. In this
case the bodies move on rectilinear orbits; the geometric configuration
is subject only to resizing with a factor o(t).

(iii) A homographic orbit occurs when neither o(t) nor 6(t) are constant.
The geometric configuration is such that the ratio of the relative dis-
tance between any two bodies remains constant.
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Thus, relative equilibria and homothetic orbits are particular cases of homo-
graphic orbits. In any case, we stress that the vectors &1, . . ., £ and the func-
tions o(t), 0(t) are not arbitrary. Our aim is to prove that there exist solutions
of Newton’s equations (1).

Lemma 3. Equations (1) for the orbits (3) are written as

d . L
4 00=0, 0=-
( ) dt Q2 ?
where L is a constant, and, denoting r; 1, = ||; —
. ﬁk .
(5) @— memk@ j=1...,N.
k7]

The proof of the lemma reduces to writing Newton’s equations in planar polar
coordinates. This is a standard calculation in books on Mechanics.

1.2. Planar Central Configurations

Central Configurations are defined as follows (see (Wintner 1941), § 355).

Definition 4. A system of bodies in space is said to be in a central configu-
ration in case the total force acting on each body is proportional both to its
mass and to its barycentric position.

We emphasize that the enunciate is concerned only with the configuration
of the system, that is, with the position of the bodies at a given fixed time,
irrespective of the velocities.

In a central configuration the coordinates of the bodies must satisfy

(0) Ve = ka9@<rj,k)€j — & , J=1...,N.

/ro .
ooy Ik
where U > 0 is a constant. There is some freedom here.

Lemmas. Let &, ... &N be a solution of equations (6) with a given V. Then
the following holds true:
(i) The vectors R,&1, ..., R.&n, where R, is a plane rotation matrix with
an arbitrary angle o, solve the equations with the same V.
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(ii) Given any o > 0, let us rescale &, = &1, ...,En = o€y, so that the
relation r;j, = ar‘;-, .. applies to the corresponding distances. Then the
equations are changed as

o¥ fj ka@ 07“ 5 gk (ij L = 3 _£k>

oy g k 3.k 5.k
The proof is straightforward: just make the necessary substitutions.

Proposition 6. Let the bodies move on homographic orbits, including also
the subcases of relative equilibria and of homothetic orbits. Then at any in-
stant of time the bodies are in a central configuration.

The claim is self-evident in view of Equation (5).

Corollary 7. The quantities V and L in Lemma 3, and the angular velocity
w are subject to the following rules.
(i) For a relative equilibrium, we have L* /o3 = U # 0, with gq the fixed
initial value, and the angular velocity is w = L/ g3.
(i) For a homothetic orbit, we have w = L = 0; V is replaced by a positive
Sfunction (o) as in the next case (iii).
(iti) For a homographic orbit the constant L is determined by the initial
conditions; w(t) = 0 obeys Equation (4); V is replaced by a positive
Sfunction V(o) satisfying

§k .
(7) ka(p Qr]k ) ]:17"'7N7
k#j

where &1, . .. En are constant vectors.

Proof. (1) Equation (5) is rewritten as

) L2)
G- =) =_".
( o3

A solution of relative equilibrium exists only if ¢ = ¢ = 0; if so, then we
have L?/03 = ¥, and § = w = /¥ /g in view of Equations (4).

(i1) Equation (4) entails L = 0.

(iii) The distances 7 in Equation (5) are rescaled by a factor o(¢). Hence,
the right member obviously depends on g. Since in Equation (3) the vectors
¢ must be fixed, ¥ needs to depend on p, but not on €. Q.E.D.
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2. COLLINEAR CENTRAL CONFIGURATIONS

In the case of collinear orbits, the vectors &1, ..., &n must all be parallel;
hence a single coordinate describes the position of the bodies on a line, and
the angle 6 describes how the line is rotated in the plane.

Let us denote by £ = (&1,...,&N), ordered as &1 < ... < &, the coor-
dinates of the NV bodies on the line, taking the barycentre as the origin. The
equation of the barycentre gives m1&; + ... + myény = 0.

In view of Lemma 5, we may suppose that we have o = 1 at a given in-
stant, so that the configuration of the bodies is given by £ (on need, just rescale
€). Denote by r; j, = |§; — &/ the relative distances between two bodies. The
attractive force exerted by the k-th body on the j-th one is m;myp(r) 1),
where the sign is positive if j < k, negative otherwise. Hence, &1,...,&,
must obey the system of equations (forgetting the common factor m; and
assigning a positive sign to the attractive force)

7—1 N
®) W= mpplreg) — > mrplrie), j=1,...,N,
k=1 k=j+1

where W is a constant factor which controls the proportion between the at-
tractive force acting on a body and the distance from the barycentre. Here,
the first and the last sum are empty for j = 1 and j = N, respectively. These
equations are not independent, since they must satisfy the equation of the

barycentre. We introduce the n = N — 1 distances between two neighboring
bodies

9) 0j =Tjjt1 =81 =&, J=1,...,n,
so that for j < kwehaver;, = & — & = 0; + ...+ 0p—1. We will also
use the collective notation § = (dy, .. ., d,). Note that by definition we have

d; > 0, in view of the ordering of the coordinates ; this excludes the case
of two or more bodies occupying the same position. We subtract the j-th
equation from the next one; thus defining

Q;(65) = ‘I’éj — (mj +mji1)p(d5) ,
Gi(6) = = mi[e(rrs) — @(rr; + 65)]
k=1
n+1

=3 mufelrjiir) — (6 + i) -
k=j+2

(10)
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We recall that the first and the last sum in the definition of G;(§) are empty
forj =1and j = n+ 1 = N, respectively. With this setting, we write the
system of n equations

(11) C?j(éﬁ) = C;j(5) y j = 1,.. .,

Denoting by ¢ = 71 5,41 = Z?:l d; the length of the chain of bodies, we
add up all equations (11), and get the useful equation

(12) Ql) = G(5)

where

A

Q) = Wl — (m1 + mpq1)e(l) ,

(13) ka P(Trnr1) T o(rie)] -

This establishes the relation between the free parameter ¥ > 0 and the length
¢ of the chain of bodies, which is thus determined once the distances 9 are
found. We show how to find Equation (13). Exploiting the expression for
G(6) in (10), and appropriately removing the meaningless terms in G (0)
and G, (0), we calculate the sum 7| G;(9) as

n J—1 n—1 n+l1

3 S mlptri) — lrg] - X X malietyens - otz
j=2 k=1 j= 1k—]+2

n=l n n+1

= — Z My Z [go(rkﬂ') 7“/.(;7]4_1 Z mg Z Tj-i-l k: (Tj,k)}

n—1 n+1
==Y m[erepr1) — e(Thns1)] ka (rr—1%) — @(r1e)] -
k=1

Here, in the intermediate line the sums have been exchanged, with an ap-
propriate resetting of the limits. This produces two telescopic sums over the
index 7, which result in the simplified expression of the third line. Using the
latter expression, we add up Equations (11), and using also 7 1 = 05 we
compensate the terms (m; + m;11)p(d;) on the left side; thus, with some
recasting, we get Equation (12).
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With this setting, the problem of finding a central equilibrium is enunci-
ated as follows:

Given U > 0, to find a solution of Equations (11) and (10).
That is, we are actually looking for a family of central configurations param-
eterized by the positive quantity W.

Proposition 8. With the hypotheses of Theorem 1 on the force o(r), for any
finite ¥ > 0, and for any set of positive masses m1, ..., mpy, the system of
Equations (11) possesses a unique solution.

The rest of the present section is devoted to the proof.

2.1. Preliminary general facts

By definition, the variables ¢ are all positive; hence we may consider them
as belonging to the positive quadrant R} of R".
We denote by A; the set of the n — 1 variables 0, with k£ # j, namely

Aj = {(51, .. .,5j_1,5j_|_1, .. 7571}

When we say that A; is fixed, we mean that every variable in A; is fixed, so
that the sole variable §,; may vary.

Lemma 9. The following properties hold true.
(i) The functions Q;(9;) and Q({) are continuous and monotonically in-
creasing between the limits
Jim Q;(65) = —(m; +mys1)e(0), lHm Q;(d;) = +o0,

(5j—>+OO

and

lim Q(¢) = —(m1 + mpy1)e(0), lim Q) = +oo,
£—0 £—+o0
where ©(0) may be either finite or infinite, depending on the character
of the function p(r).
(ii) Let Aj be fixed, so that G () may be considered as depending only on
;. This function is negative, continuous and monotonically decreasing
between the limits

lim G;(6) =
5j11_1>10GJ(5) 0,

7j—1 N
Iim G0 == miferig)] = 3 mileyia].
! k=1 k=j+2
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2
Ofp———— - (5;_ 5j
Q;(9;)
G(9)
e

Fig. 1 — lllustrating the argument of proof of Lemmas 10 and 11. Left: the
functions Q;(6;) and G;(9), with A; fixed, with the intersection w;(A;) and
the upper bound 5;3 Right: the function Q({) and the lower bound £~ ; G(6) is
positive, and its graph lies in the gray band.

(iii) Fork # j, let Ay, be fixed. Then G;(0), considered as depending only
on Oy, is a continuous and monotonically increasing function.

(iv) The function G (6) is positive, continuous and monotonically decreas-
ing between a positive, possibly infinite value for { — 0, and with
G((S) — O0if all distances 1y, tend to +00. Moreover, it monotonically
decreases if any of the distances r;, increases.

Proof. According to Formula (10) and (13), all functions considered here
are sums of continuous functions; hence they are continuous. In view of our
hypotheses on ¢(r), for any positive h we have

=0 for 5j—>0,

(14) o(h) = olh +9) { =p(h)  for 0; = +o0.

(i) The function () is positive and monotonically decreasing, by hypoth-
esis. The limits in the statement are straightforward consequences of Equa-
tion (14).

(i) Every pair of square brackets in the expression (10) of G;(§) contains a
difference of the form ¢ (h) — ¢ (h + §;), where h > 0 is one of the distances
T With k < jorrjiq, with j+1 < k, independent of §;; since A; is fixed,
h 1s fixed, too. Then the difference is a monotonically increasing continuous
function of ¢;, which enters with negative sign in G;(§). The limits are a
straightforward consequence of Equations (14).
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(111) Every square bracket in the expression of the function G; contains a
difference of either form

o(h+3d;) —p(h) or o(h+d;+d;) —(h+ k),

where h > 0 is a finite sum of some quantities J, excluding both 6; and ;. In
the first case the difference does not depend on 0, and does not affect ;. In
the second case, let 65, < d.. Then, in view of the convexity hypothesis (H3)
on the force ¢(r), we have

o(h+ k) — p(h+ 0 + ;) > o(h+ 8;,) — p(h+ 6, + §;) .

This enters with negative sign in G;(6), which proves the claim.
(iv) The function G(§) is a sum of positive functions ©(rj), which are all
positive, continuous and monotonically decreasing; hence it inherits these
properties. For £ — 0 we have ¢(r;;) — ¢(0) for every j, k; this gives
a positive, possibly infinite sum. If ;, — o0 then ¢(r;;) — 0, which
proves the second limit. Q.E.D.
In Fig. 1 we represent the qualitative graphs of the functions );(d;) and
G;(A;) (left) and of Q(£) (right). The function G(J) is positive, which is
enough in order to establish some bounds on the solution of Equation (11).

Lemma 10. For VU > 0 finite, the following holds true.
(i) There are positive numbers {~ < (T such that the length { of the chain

of bodies satisfies
C<t< it
(ii) For j = 1,...,n, there are positive numbers 5]-_ < 5;7 such that a
solution of Equations (11), if it exists, must belong to the n-dimensional
rectangle

= (6,,60)x...x(6,,57).

Proof. The right member of Equation (12) is a positive quantity. This, in
view of Lemma 9-(i), entails that the equation Q(¢) = 0 possesses a single
solution ¢~ which provides the lower bound ¢~ < /. Since GG;() is negative,

the solution 5;7 of the approximated equation );(;) = 0 provides the bound
9 < (5;7. In turn, this provides also the upper bound ¢/ < ¢/t = 2?21 (5;.
Coming to the existence of lower bounds 4, the case ¢(0) finite is trivial;

hence we examine the case p(0) = +oo. Recall that . d; > £~ > 0, so

155

Copyright © FrancoAngeli.
This work is released under Creative Commons Attribution Non-Commercial — No Derivatives License.
For terms and conditions of usage please see: http://creativecommons.org.



A. Giorgilli, U. Locatelli, M. Sansottera, Collinear homographic orbits

that at least one J; must be positive. Let us isolate two relevant terms in the
second Equation (10), so as to rewrite it in the convenient form

(15)
Gj(6) = —mj_1[p(0j-1)—@(8;-146;)] — mjr2[e(8i11)—(6;4641)]

= my[@(rr) — o(rr; + ;)]

In view of ¢(r) being convex, in the two sums we have, respectively,

p(0j-1) — (-1 +65) > @(ri,;) — o(rr; + ;)
p(0541) — (05 + 6j41) > @(rjs1e) — ©(85 + 7j41k) -
Putting these inequalities in Equations (15) and introducing the abbreviated
notations p; = v, = 0, and
B =my+...+mj—1 for 7>1,
Vji=mMj42 + ...+ Myt for j<n.

we find that for any 6 we have
(16)
Gi(8) > =i [0(85-1)—p(8j-146))] — v [@(8j+1) — (65 +6;41)] -

Let us now consider the modified system of equations, for j = 1,...,n,

o5 — (mj +myr1)e(8;) = —ps[0(6-1) — @(6j-1 + &5)]

17
(17) —vjle(dj41) — ©(0; + 0j11)] ;

this is obtained from Equations (11), replacing G;(§) with the right members
of (16). Therefore, a solution ¢’ of these equations, compared with the corre-
sponding solution 6* of Equations (11), must satisfy (5; < 0. Itis immediate
to see that it must be (5} > 0, in view of the following argument. For j = 1,
the equation is written as

Woy — (my +ma)p(d1) = —11[p(d2) — (81 + d2)] -

For 6; — 0, the left member tends to —oo, while the right member tends
to zero. We may imagine that we should let also Jo — 0, but this is the
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physically meaningless solution. Moreover, the limit is ill defined.! The
same objection applies to the cases j > 1, as the reader may easily see. This
entails that all lower bounds 5]-_ must be positive. Q.E.D.
We may find explicit values for 6~ trough Equation (17); for instance,
trying 6; = £~ /n. Define the functions G (d;) of the sole variable J; as

(18) Gj_((sj) = THj [90(53’__1)_90@]’_—1“"5,7)} [ (5g_+1) (5 ) 5;_+1}

Ford; > 6 wehave G;(d) > G (9;), wichis a stronger inequality than (16).
Thus, the claim (i1) of Lemma 10 holds true with the selected values of 6 .

Lemma 11. For any j = 1,...,n, Equation (11) determines a family of
surfaces

Ej:{5€R1:Qj((5j):Gj(5)}, 7=1....n.

The surface 3.; is uniquely projected on the positive quadrant of the variables
Aj, and is the graph of a continuous and one valued function 6; = w;(A;),
with image in the interval 0 < §; < 5;?.

Proof. We use Bolzano’s theorem. By Lemma 9, for A; fixed, the graphs
of the functions ();(d;) and G;(§) possess an intersection at a single point
d; (see Fig. 1). Letting A; to vary, we get the function w;(A;), which by
construction 1S continuous and one-valued, and defines the surface ;. The
bound w;(A;) < (5;»L is stated in Lemma 10. Q.E.D.

Corollary 12. Let k # j, and Ay, be fixed. Then w;(A;) is continuous, one
valued and monotonically increasing with 0y. Let 0, < 0 < §F. Then the
curve ¥ N11 joins continuously the points (6, ,wj(é )) and ((5]jr w;i(6;7)),
and we have

(19) 5j_ < wj(Aj) 5—ie < (5;_ , 5]_ < wj(Aj)‘ék:(S,j < 5;_ .

Proof. Let 6 < 4y, and the corresponding A; and A’ differ only because
dy, is replaced by ;. For §; = w;(A;) fixed the functlon Q;(6;) does not
change. Conversely, by Lemma 9-(iii), G;(0) increases with 5k — 0.
Hence, the unique solution of the equation Qj(éj) = G,(6) is such that

'This point will be discussed in some detail for the case n = 2, in Section 2.2.
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05 = wj(A%) > w;(A;) (see Fig. 1). Let now 6 € [d;, 6;]. The in-
tersection >; N II, with Ay fixed, is a piece of continuous, monotonically
increasing curve, joining the points (&, ,w;(8; )) and (6;",w;(5;")), on two
opposite sides of the rectangle [5, , ;7] x [0, 5}] Inequalities (19) are a
byproduct of the proof of Lemma 10; only the inequality ;" < w;(d) de-

serves acomment. If § € ¥;NIland 0, = 6, then we have G;(6) > G~ (0;)

as defined by (18), so that the inequality is satisfied by the solution of Equa-

tion (11). Q.E.D.
In view of Lemma 11, we may redefine the surfaces X; as

(20) Zj = {5 c R™: (Sj = w](A])} .

The solution of the system of Equations (11) should be determined by the
intersection of the surfaces ;. This is the issue to be dealt with.

2.2. The case of three bodies

Here, as a significant example, we consider the case N = 3, hence n = 2,
which can be illustrated with the help of figures. This is indeed the case first
studied by Euler and Lagrange, who, however, considered only the case of
Newton’s gravitational force.

Writing Equations (10) and (11) in explicit form we get the system

o1 — (m1 +ma)p(d1) = —ma[p(82) — ©(61 + 02)] |

CU 06y — (o ma)p(02) = —mn [51) — 61+ )]
In view of Lemma 10 we know that a solution (67, d5) of the equations, if
any, must lie inside the rectangle I = (6, ,87) x (85,85 ).

The equations are symmetric in d; and do; hence it is enough to discuss
the second one, so that we have j = 2 and Ay = {01 }. In Fig. 2 we draw the
qualitative graph of the functions w1 (d2) (blue) and ws(d1) (red) in different
possible cases. The rectangle 11 where the desired solution may be located is
highlighted; grey regions are progressively excluded.

In view of Lemma 11 and Corollary 12, the second Equation (21) deter-
mines a curve Yo, defined by a continuous, one-valued and monotonically
increasing function ws(d1). The former property excludes the panel (a); the
latter excludes the panel (b).

The graph of wo (1) for 1 — 0 may deserve some comment. This is not
strictly necessary, for we are actually interested only on the interval §; > ¢,
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Fig. 2 — Schematic representation of the curves 3.1, Yo defined by Equations
Ql(él) = G1(51, 52) and Q2(52) = G2(51, 52), inside the rectangle II. The
four panels suggest some possible layout of the graphs.

but it may help to clarify the qualitative behaviour of the curve close to the
origin. The critical case shows up if we let ¢(0) = 4o00; we are confronted
with a double limit §; — 0 and 6o — 0. We are actually interested in deter-
mining limgs, o w1 (d2); hence we proceed as follows. Let us choose a small
e > 0, and redefine p(r) = ¢(e) for r < e. For §; — 0 we just replace
the infinite value ¢(0) in Equation (21) with the finite ¢ (¢). Thus we get a
positive solution §; = w1 (0), depending on . In the limite — 0, for §; < ¢
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we keep only the dominating terms, thus rewriting Equation (21) as

mq
mi1 -+ mo + ms

p(02) ~ ©(01) .

This shows that for small 6; we have wy(d1) > 91, with §o — 0, as repre-
sented in the figure. The same considerations, mutatis mutandis, apply to the
first Equation (21), and so to the curve 3; and to the function wy (J2). We just
note that when we let 5 — 0 we should exchange the role of the two limits,
which makes the apparent intersection 1 M 3o at the origin in the figures a
spurious fact.

Let us now focus on the intersection 31 Mo, looking at panels (c) and (d)
of Fig. 2. We aim at proving that an intersection point exists, and that it is
unique. From Corollary 12—(ii1), we know that >; N II joins continuously
two points on the lower and upper side of the rectangle II; similarly, 3o N II
joins continuously two points on the left and right side of the rectangle. In
view of Bolzano’s theorem, the two curves must have an intersection point.
It remains to show that this point is unique.

By contradiction, suppose that there exists 6’ € X1 N X5 such that §* #
d’. By possibly exchanging the points 6* and §’, we may consider only two
different cases, namely: (i) 0] < 0] and &), > d5; or (i) &; > J7 and &5 >
05. We show that neither of these two cases occurs. The case (i) is that of
panels (a) or (b) of Fig. 2, that we have already excluded. In case (ii), both
6* and &’ must satisfy also Equation (12) for the length £ = §; + 02, which in
our case is written as

Wl — (my +ma)p(l) = ma[p(61) + 0(62)]

with the corresponding lengths ¢* = 07 + 05 and ¢’ = 6] + 05. This cannot
be, for, by increasing both §; and do, the left member increases, and the right
member decreases, in view of the monotonically decreasing character of (7).
This excludes the case of panel (c), thus showing that panel (d), with a single
intersection point, is the correct one.

As an example, consider the case of Newtonian force ¢(r) = 72, using
some algebra. We may conveniently introduce better variables, adapted to
the case n = 2. Using the length ¢/ = &3 — & as a parameter, we set 61 = o
and d2 = ¢ — o, and rewrite Equations (21) as

Vo — (m1 + me)p(o) = —ms [90(5 —0) — 90(5)} ;

(22) U(l— o) — (ma +mz)p(l — o) = —my [p(o) — ()] .
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Multiplying the first equation by (¢ — o) and the second by o, and subtracting
member by member we get

(m1 +m2)(£ — o)p(o) —ma(l — o) [p(l — o) — p(0)]
= (m2 + ma)op(l — o) —mio [p(o) — (0)] .
Now we introduce a variable z = ¢ /¢, with z € (0, 1), and set p(r) = 5.
Rearranging the equation we write

my + ma(1 — x) _ mg + mox
x? (1 —x)?

= mlx—mg(l —.’13) .

We are thus led to solve the algebraic equation of fifth degree

(m3 +m1) z° — (3ms + 2mq) 2t + (3ms + 2mgy + my) 2°
—(3m2+m1)x2—|—(3m2—|—2m1)w—m1—mg =0.

We know from our general argument that a unique solution exists; on need,
we calculate it through numerical methods. For given /, this gives 61 and d2,
while U may be found through Equation (12). The discussion of the orbits
goes as in the general case.

We have thus recovered the collinear solutions discovered by Euler (Euler
1767; Euler 1770) and Lagrange (Lagrange 1772). However, we emphasize
once again that our theory applies also to the case of generic forces satisfying
our hypotheses (H1)—(H3).

2.3. Proof of Proposition 8

Coming to the general case N > 3, we study the intersections of the
surfaces >J; defined by Equation (20). Corollary 12 plays a main role here.
We use notations such as F'(6) ‘2- to denote the restriction of a function F'()

to the surface £ ;. That s, F((S)’E_ = F(5)‘5:w_(A_) , so that the function on

the left side is made independent of ¢;, and depends only on n — 1 variables.
We construct the proof through a recurrent procedure, schematically rep-
resented in Fig. 3. Let us define the sets

(23) 521:21, QSZQs_lﬂES for SZZ,...,TL.

Our aim is to prove that {€2,} is a sequence of surfaces of decreasing di-
mension n — s, ending up with a single point 6* which is the solution of
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Fig. 3 — Schematic representation of the recurrent proof of Proposition 8

Equations (10). We use the simplified notation A.g = {d1,...,0s—1}, and
similar notations A<y, As ¢ and A>,, with obvious meaning.
Atevery steps = 1,...,n — 1, we construct by recurrence a set of func-
tions
Wi(Ass) for j=1,...,s,
wp(Ass) for k=s—1,...,n;

(we avoid overloading the notations by introducing a further label s which
identifies the step; the scheme shows how the functions actually change, and
the functions on the right of the scheme completely replace those on the left).
The (n — s)—dimensional surface €25 (in the right column of Fig. 3) is de-
scribed by the s functions w1 (Asg), ..., ws(Ass). The remaining functions
wy (Ass) are defined as w) (As,) = wk(Ak)‘Q , namely the restriction of
the initial functions to the surface €2;. A key posint is that at every step the
functions w; (A ) enjoy the properties of Corollary 12, that is, they are con-
tinuous and monotonically increasing, and satisfy the inequalities (19). Now
we describe the procedure in algorithmic form, postponing the proof of these
properties.

The first step, s = 1, is a trivial matter. Noting that A~; = A;, we fill
the left column of the scheme in Fig. 3, corresponding to s — 1 = 1, by just
setting
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The substitution §; = w;(As1) on the last line performs the restriction
wi (Ag) ’Q ; the variable d; is made to depend on A~ 1, which reduces the

dimension. The point to be highlighted is that 0o = ws(As) defines the
surface Yo, since the second member is independent of do; the substitution
removes 01 from the free arguments, but reintroduces d», thus promoting the
definition to be an equation for Js.

Now we come to the recurrent part of the proof, s = 2, ..., n—1. Suppose
that we have filled the left column of the scheme for €2;_;. We focus on the
central row of the scheme. Solving the equation d; = w’ (A~ ) with respect
to d5, we get the new function d; = ws(As;), written in the central rectangle
and replicated in the right column; this replaces the function w,(A>¢) on the
left. The other lines mean that in each function on the left, either w;(Ax>;) or
wy.(A>s), we substitute 0, = Ws(Ass), symbolized by the small circles; this
represents indeed the restriction, either w;(A>;)|, orw) (Ass)|, ,reported
in the right column as depending only on A~ .

For s = n, in the left column we have functions of the sole variable 6,
The solution of the equation §,, = w'(d,) provides a value satisfying % =
Wy (y,). The other lines determine 67 = w;(d;). This provides the final
value §* = (47, ..., ;) which is the desired solution of Equation (10).

This describes the algorithm. Here from, in view of Lemma 10, we restrict
our attention to the rectangle II. We should prove the following:

(i) that the solution of the equation §; = w’, (A~ ) exists and is unique;

(ii) that the functions w;(A~ ) and w) (A~ ) found at step s are continuous
and monotonically increasing, and enjoy the properties of Corollary 12
with respect to the variables A~ ¢ on which they depend.

It may seem natural to argue that a solution of the equation for J5 should
exist, and that it inherits the properties of Corollary 12, for we are selecting a
restricted set among the solutions of the equation Q4(ds) = Gs(As), which
do exist, indeed. This, however, may be a puzzling point; so let us clarify it.
We make reference to Fig. 4.

For s = 1 we have w1(As1) = wi(A1), and there is nothing to prove.
The functions wj (As1) = wi(Ag) !Q are compositions of continuous and
monotonically increasing functions, that only make d; to depend on A-.
Hence, w} (A~1) inherits all properties, including those of Corollary 12.

Suppose that the claims (1) and (i1) are true up to s — 1, and focus attention
on the equation §; = w,(A>g). Let, for a moment, A~ be fixed; thus the
equation means that we may restrict our attention to considering a continu-
ous, monotonically increasing map w’,(ds; A~;), depending on the variables
A~ g as parameters. By Corollary 12 the image of the map is an interval

o, Mo,
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Fig. 4 — Illustrating the solution of the equation 05 = w’(Axy), for A fixed,
in the square (67 ,07) x (65,07).

[6%,67] C [65, 8], with the properties stated in Equations (19). The qualita-
tive graph of the map is represented by the curve in Fig. 4, to be intersected
with the graph of the identity. By Bolzano’s theorem, there is at least one
fixed point 6;. We prove that such a point is unique, using Equation (12) for
the length £ = 41 +. ..+ 0, of the chain. By contradiction, suppose that there
is a second fixed point 0s > 0. Since A are fixed and all functions w; are
monotonically increasing with &, the left member Q(¢) must increase. Con-
versely, the right member G (6), as defined by Equation (13), must decrease.
Therefore a second fixed point 6, cannot exist.

Let now A to vary. In all previous steps we have just made a sequence of
restrictions of the initial functions w(A;) to the surfaces €21, ..., Q4_1; thus
we have w)(As;) = ws(Ay) ‘Q - That is, at every point A>; we calculate
the composed function

w,(Azs) — Ws (@Dl(AZs)) ERR) ws—l(AZS)a sy e s 571) )

Letting any of the variables A to increase, and by the induction hypothe-
sis, the functions w;(A>) increase too, and are continuous and one valued.
By composition, w’(A>;) inherits all these properties. For any A>¢ we de-
termine an unique point 5 s(Ass), thus constructing a function which is still
continuous, one valued and monotonically increasing with every variable in
A~ (Fig. 4 may help). Furthermore, for any A, the interval [0, 4] is

mapped into [0, 6”] C [0, 7], thus making d,(A~ ;) to inherit the proper-
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ties of Corollary 12. Let us define the new function

(24) Ws(Ass) = w;(AZS) 5

This is again a composition of continuous, one valued and monotonically in-
creasing functions, which for any A< ¢ maps the interval [§;, 5] into itself,
and retains all desired properties, including those of Corollary 12. This com-
pletes the induction step up ton — 1.

For s = n we use only the proof that the equation d,, = w'(¢,) has a
unique solution ¢ ; thus the substitution J,, = J;; makes the right column of
the scheme in Fig. 3 to contain only unique numbers (5;-*. As already said, this
provides the final value §* = (67,...,0)) which is the desired solution of

Equation (10). The proof of Proposition 8 is thus complete.

3. RELATIVE EQUILIBRIA AND STATIONARY ORBITS

We come to the proof of Theorem 1. We show that to every solution ¢* of
the system of equations (11) there corresponds a relative equilibrium. The or-
bits are written as in (3), with the bodies aligned on a straight line at positions
&1,...,&n. These positions are calculated from 91, . .., d,, as follows. We
first set, by recurrence, {1 = 0and §; = §j_1 +9; for j = 2,..., N; then we
translate the origin to the barycentre. Equation (12) provides the length ¢ of
the chain. According to Corollary 7, for a stationary orbit we have o(t) = 0o
and § = w = L /03, where L is determined from the relation L?/o3 = .
Recall that at the beginning of Section 4 we have introduced a rescaling so
that o9 = 1. Thus, by Proposition 8, the desired stationary orbit is described
as

ot)=1, w=VU.
Since a solution exists for any positive ¥, we have actually found a whole
one-parameter family of stationary orbits. Any such solution corresponds to
a given order of the masses, which is given in advance. Hence, by apply-
ing an arbitrary permutation, and identifying symmetric solutions obtained
by inversion of the order, we may find N!/2 different configurations. This
completes the proof of Theorem 1.

4. HOMOGRAPHIC ORBITS AND HOMOTHETIC ORBITS

The question concerning homographic orbits and homothetic orbits is more
challenging: the point that deserves to be examined is whether a rescaling of

165

Copyright © FrancoAngeli.
This work is released under Creative Commons Attribution Non-Commercial — No Derivatives License.
For terms and conditions of usage please see: http://creativecommons.org.



A. Giorgilli, U. Locatelli, M. Sansottera, Collinear homographic orbits

coordinates with a factor o(¢) may be introduced in a form compatible with
Equations (4). As stated in Corollary 7, we should replace the constant W
Equation (3) with a function (), satisfying a compatibility relation with
the function @ (or).

Corollary 13. Let us suppose that o(or) = g(0)p(r). Then, to any solution
of Equations (8) with a given positive ¥V we may associate a family of solutions
parameterized by o > 0, just substituting the constant ¥ with the function
Y(0) = Vy(o), and leaving & = (&1, ..., &) fixed.

The proof is just matter of factoring out g(o) in the right members of Equa-
tions (8).

According to Corollary 7, the solution of Newton’s equation for the central
motion provides both functions o(¢) and 6(t), the constant L being calculated
from the initial data. Since all positions of the bodies are multiplied by a
common factor o(t), the ratio between mutual distances of bodies remains
constant.

Homothetic orbits are a particular case, when the initial conditions are
such that L = 0. In this case the motion is rectilinear.

It is quite natural, though not necessary for a dynamical model, to assume
that the force function o (r) should be differentiable. In this case we prove
that the function should be homogeneous, hence a power law.

Lemma 14. Let the force function p(r) be differentiable. Then we have
o(r) o< 7 with some «, so that (o) x %,

Proof. Let p =1+ ¢, and write

(1 +e)r) = @(r) +ere'(r) +ole)
g(1+e)p(r) = [g(1) +eg'(1) + o(e)]p(r) .

Setting g(1) = 1 and ¢’(1) = « and equating the coefficients of € we imme-
diately get the equation r¢’(r) = ap(r). By separation of variables we get
@(r) = r* up to a multiplicative factor, as claimed. Q.E.D.
This Lemma justifies the introduction of our hypothesis (H4). The proof of
Theorem 2 is thus concluded.

We illustrate our result by drawing some orbits for three bodies in Fig. 5;
the bodies are labeled as A (green), B (red) and C (blue). In the upper left
panel we draw the orbits for the Newtonian gravitational force, o(r) = 1/r%:
the orbits are homographic ellipses. The right upper plane shows the orbits
for the force ¢(r) = 1/r3/2; the orbits are still homographic, and exhibit
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Fig. 5 — Collinear solutions of the problem of three bodies. Upper left panel:
o(r) = 1/12, homographic ellipses. Upper right panel: o(r) = 1/1r3/2, homo-
graphic orbits with apsidal precession. Lower left panel: a non-homogeneous
force p(r) = 1/1? — &/r3, with ¢ = 0.225; the orbits are not homographic.
Lower right panel: the time evolution of the ratio |AB| / |BC|.

an apsidal precession with an angle independent of the radius, as predicted
by Newton (see, for instance, (Giorgilli and Guicciardini 2021). The lower
panels refer to the non-homogeneous force p(r) = 1/r? — ¢/r3, where ¢
1s a positive parameter; stationary (circular) orbits do exist as well, but non-
stationary orbits are not homographic, as predicted by our theory. This is
confirmed by the lower right panel: the time evolution of the ratio of the
distances |AB| /| BC| is not constant.
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5. CONCLUSIONS

We have proved the existence of collinear central configurations for a sys-
tem of NV bodies, thus generalizing the solutions of the problem of three bod-
ies found by Euler and Lagrange. With respect to the existing literature, we
consider a general class of forces, obeying mild conditions of monotonicity,
continuity and convexity. This includes in particular, as a subclass, forces
depending on an inverse power of distance.

As a general fact, we prove the existence of stationary solutions, akin to
relative equilibria, with the bodies revolving around the barycentre in a rigid
configuration. Then we prove the existence of homographic and homothetic
orbits by restricting the forces to obey an inverse power law. The latter forces
are widely considered in Newton’s Principia.

Our discussion reduces the study concerning the qualitative shape of ho-
mographic orbits to that of a single body moving in a central force field. A
detailed discussion of the latter point would require a considerable number
of pages, which is incompatible with the length of an article like this. On the
other hand, it may be found on classical treatises on Mechanics or Celestial
Mechanics — Newton’s, for instance.
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