Cos’¢ la diffusione anomala
(e perché ¢ cosi consueta)
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SUNTO - In questa nota esploreremo il concetto di diffusione e vedremo come la sua in-
terpretazione sia cambiata nel tempo. Scopriremo perché la diffusione ¢ un’idea cosi utile e
universale, che funziona sempre... tranne quando non funziona! In quei casi, ci viene in aiuto
la “diffusione anomala”, che offre una chiave di lettura diversa e complementare.
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ABSTRACT - In this note, we will explore the concept of diffusion and see how its inter-
pretation has changed over time. We will discover why diffusion is such a useful and universal
idea, one that always works... except when it doesn’t! In those cases, “anomalous diffusion”
comes to the rescue, offering a different and complementary perspective.
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PARTE PRIMA — DIFFUSIONE

1. IPSE DIXIT

Secondo Aristotele, tutti gli enti terrestri st muovono verso il “luogo na-
turale” di appartenenza: la pietra affonda nell’acqua, ma una bolla d’aria sale
verso 1’alto.

Dispiace dirlo, pero Aristotele, qualche volta, aveva torto. Se versiamo po
di latte nel caffe, le particelle tendono ad andare da una zona ad alta concen-
trazione verso una zona a bassa concentrazione € non sembrano avere nessun
luogo naturale da raggiungere (cft. Fig. 1).
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A parziale discolpa di Aristotele, qualcuno ci ha fatto notare che ai suoi
tempi il caffeé non esisteva, ma insomma questo fenomeno di “diffusione” in
cui 1l trasporto di materia ¢ determinato da una differenza di concentrazione,
e non dalla presunta esistenza di un luogo naturale cui le particelle dovrebbe-
ro tendere, poteva essere osservato in altri fenomeni comuni all’epoca, tra cui
ad esempio quello di mescolare acqua e vino in un cratere, come era d’uso
nei banchetti (il consumo di vino puro era considerato un atteggiamento pro-
prio dei barbari, consentito solo alle divinita; e comunque senza le moderne
metodologie di conservazione era possible al tempo che il vino diventasse di
frequente aceto).
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Fig. 1 — Diffusione in un liquido. Immagine di JrPol, Wikipedia, Creative Commons
Attribution 3.0 Unported license.

2. DAI DIAMANTI NON NASCE NIENTE...

...dagli errori (in buona fede) nasce, a volte, una teoria scientifica unifican-
te. Questo ¢ il caso della teoria della diffusione, fondata sull’osservazione che
la tendenza a “diffondersi” da regioni “congestionate” verso regioni “libere” ¢
comune ai fenomeni piu disparati, come 1’ossigeno e 1’anidride carbonica nei
capillari attorno gli alveoli, un prodotto sul mercato, un’idea in una comunita,
I’energia di un sistema fisico, il calore di un corpo, gli animali nell’ambiente
naturale, eccetera.

Per cui 1l concetto di diffusione, con le sue tante sfaccettature, ¢ ormai un
pilastro portante in matematica, statistica, fisica, biologia, finanza, scienze
sociali, ecc., e, in un certo senso, puo essere visto come un tassello di un’au-
tentica “teoria del tutto” che cerchi di spiegare fenomeni diversi alla luce dello
stesso modello fondamentale.
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3. MA COME RENDERE IL CONCETTO DI DIFFUSIONE QUANTITATIVO?

Questa ¢ una domanda basilare, perché con la sola analisi qualitativa po-
tremmo solo dire che le cose “si mischiano”, invece vogliamo capire co-
me/quanto, poter fare predizioni, usare la diffusione per comprendere la realta
circostante, ecc.

3.1. Approccio numero 1: teoria di media

Per modellizzare quantitativamente la diffusione, possiamo assumere che
la concentrazione u(z, t) di particelle (in un punto x dello spazio, ad un istan-
te di tempo t) vari in ragione delle concentrazioni nelle vicinanze. Ad esem-
pio, possiamo pensare che la concentrazione ad un istante di tempo succes-
sivo, diciamo t + 7, corrisponda alla concentrazione al tempo ¢ aumentata di
una quantita proporzionale (secondo una costante positive cg) al “surplus”
di particelle contenuto in una piccola regione attorno al punto x.

In matematichese, se B, (x) denota la palla di raggio p centrata in x, questa
descrizione corrisponde all’equazione

u(z,t+71) =u(x,t) + CO/B . (u(y,t) — u(z,t)) dy. (1)

I parametri 7 € p in un’equazione di questo tipo sono pensati come in-
crementi “infinitesimali”, nel tempo e nello spazio rispettivamente. Al fi-
ne di rendere questa equazione “sensata” bisogna scegliere questi parametri
opportunamente: per esempio, la scelta 7 = p+2 conduce alla relazione

Oyu = cAu, (2)

chiamata equazione del calore.! Qui sopra, il simbolo 9; denota la derivata
rispetto al tempo e A ¢ I’operatore di Laplace, ovvero la somma delle derivate
parziali seconde pure rispetto alle coordinate spaziali:

'In questa notazione, d denota il numero di dimensioni (d = 3 nello spazio usuale, ma
I’approccio proposto varrebbe in qualsiasi dimensione). L’ Appendice A fornisce ulteriori det-
tagli su come ottenere 1’equazione del calore (2) dal modello proposto in (1). La costante ¢
che compare nella (2) ¢ proporzionale alla costante ¢y della (1) ed ¢ chiamata coefficiente di
diffusione.
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3.2. Approccio numero 2: teoria statistica

Oltre ad aver esplorato 1’ Australia (all’epoca Nuova Olanda, catalogando
oltre 4000 nuove specie vegetali) e aver individuato il nucleo cellulare, Ro-
bert Brown ¢ famoso per la scoperta del moto browniano, avendo osservato al
microscopio granuli di polline in acqua muoversi in modo continuo e frene-
tico. Brown non diede una spiegazione precisa per questo fenomeno (che in
effetti era stato precedentemente notato anche dal botanico Jan Ingenhousz).
Il chimico Leon Gouy ipotizzo per primo che il moto browniano fosse causato
dall’agitazione termica degli atomi, ma, come vedremo, per una spiegazione
fisica esaustiva ci sara bisogno del genio di Albert Einstein nel suo momento
di forma migliore.

Per comprendere il legame tra il moto browniano e il concetto di diffu-
sione, possiamo considerare la densita di probabilita u(x,t) di trovare una
particella nel punto x all’istante di tempo ¢. Seguendo un moto browniano,
una particella seleziona una direzione casuale e si sposta, in un’unita di tem-
po 7, di un passo lungo A in quella direzione, e poi ripete la stessa procedura
per le successive unita di tempo.

In matematichese, questo corrisponde a dire che la densita di probabili-
ta u(z,t + 7) di trovare una particella nel punto x all’istante di tempo ¢ + 7
concide con la sovrapposizione delle probabilita u(x + hw,t) di trovare la
particella al tempo ¢ nel punto x + hw, per una qualche direzione w, molti-
plicate per la probabilita di saltare dal punto x + hw al punto = nell’unita di
tempo (e questa probabilta ¢ la stessa per tutte le possibili direzioni).

Ovvero,

u(z,t+ 1) :][aB u(z + hw, t) dw, (3)

dove 0B; denota la superficie sferica (cio¢ 1’insieme di tutte le possibili di-
rezioni, che di fatto possono essere rappresentate come vettori di lunghezza
unitaria) e la notazione fa p, ¢ lamedia su questa superficie sferica (cio¢ I'in-
tegrale su questa superficie, diviso 1’area della superficie stessa, che corri-
sponde alla probabilita di salto).

Sottraendo u(x, t) ad ambo i membri della (3) e dividendo per 7 = coh? —
0, si ottiene di nuovo 1’equazione del calore (2).> Questo ¢ interessante in
quanto rivela che la diffusione (in quanto trasporto di massa dovuto a diffe-
renze di concentrazione) ha anche un fondamento statistico e la combinazione
di queste due interpretazioni porto a uno dei piu grandi successi della teoria
della diffusione, cio¢ al calcolo del Numero di Avogadro.

L’ Appendice B contiene ulteriori dettagli su come ottenere I’equazione del calore da (3).
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Fig. 2 — Formare [’acido cloridrico, rispettando la Legge di Avogadro. Immagine
prodotta dagli autori.

4. COME SI SUOL DIRE, DURA LEX, SED LEX

Secondo la Legge di Avogadro, il volume di un gas ideale ad una da-
ta pressione e temperatura ¢ proporzionale al numero di particelle (atomi o
molecole), indipendentemente dal gas.

La Legge di Avogadro ¢ molto sorprendente, almeno per due motivi. Il
primo motivo ha a che fare con la sua interpretazione della struttura della
materia, il secondo con la sua impressionante “universalita”. Per capire I’im-
patto sulla struttura della materia, vale la pena ricordare un esperimento che
aveva effettuato Gay-Lussac, il quale, facendo reagire idrogeno H e cloro Cl,
ottenne cloruro di idrogeno HCI. E fin qui nulla di strano, chiunque credereb-
be che con un po’ di H e Cl si possa fare un po’ di HCI. La cosa strana, pero,
era che, all’epoca, ci si aspettava che un certo numero di atomi di idroge-
no, contenuti in un dato volume, interagissero con un certo numero di atomi
di cloro, contenuti in un volume equivalente, producendo lo stesso volume
di cloruro di idrogeno, invece quel che si otteneva era un volume doppio di
cloruro di idrogeno.

Allo stesso modo, con due litri di idrogeno e un litro di ossigeno si otten-
gono due litri di vapore acqueo (non un litro, non tre litri).

La legge di Avogadro spiega questi fenomeni: mostra che 1 volumi di gas
non possono essere semplicemente pensati come scatolette o cubetti, e sug-
gerisce che alcuni gas siano costituiti non da atomi singoli, ma da molecole
(biatomiche nel caso dell’idrogeno Hs, del cloro Cls, dell’ossigeno Os, ecc.).
Per ogni coppia di molecole Hy e Cly si formano due molecole di HCI (si
veda Fig. 2), e per due molecole di Hs e una di O4 si formano due molecole
di H2O (si veda Fig. 3).

La seconda proprieta sorprendente della Legge di Avogadro riguarda il
suo carattere universale: la legge ¢ valida per tutti 1 gas (ideali), indipenden-
temente dal tipo di gas e dalla grandezza o peso delle sue molecole.
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Fig. 3 — Formare [’acqua, rispettando la Legge di Avogadro. Immagine prodotta
dagli autori.

In un certo senso, tuttavia, la profondita della Legge di Avogadro delinea
il confine della sua capacita: la Legge di Avogadro stabilisce una relazione di
proporzionalita universale, dicendoci che il numero di particelle di un gas ¢
proporzionale al suo volume, ma non ci dice quante particelle di gas ci sono
in un dato volume. La Legge di Avogadro ci dice che la quantita di sostanza
(ad esempio, misurata in “mole”) ¢ proporzionale al volume, ma non ci dice
quante molecole corrispondono a questa quantita di sostanza.

Per sapere questa informazione, dovremmo conoscere il numero di mole-
cole contenute in una mole, che ¢ chiamato Numero di Avogadro (qui denota-
to come /V4), ma questa sembra un’impresa titanica, perché ci aspettiamo sia
un numero grandissimo, € mica possiamo perdere tempo a contare molecole
una ad una...

5. UNA GRANDE MENTE

Una vecchia pubblicita sosteneva che «per dipingere una parete grande,
non ci vuole un pennello grande, ma un grande pennello». Per cui, per contare
un numero grande di particelle, ci vuole una grande mente, quella di Albert
Einstein.

Einstein si era iscritto all’ETH di Zurigo nel 1896 (I’anno prima era stato
bocciato all’esame di ammissione per un’insufficienza nel test di francese)
e laureato nel 1900, classificandosi quarto su cinque promossi. A differenza
degli altri laureati, non ottenne un posto come assistente universitario e ac-
cettd un lavoro all’ufficio brevetti di Berna. In questo frangente, nell’annus
mirabilis 1905 Einstein scrive quattro lavori che cambieranno la storia del-
la scienza, uno sull’effetto fotoelettrico (che lo condurra al Premio Nobel nel
1921), uno sulla relativita ristretta e uno sull’equivalenza di massa ed energia,

contenente la famosa formula E = mc?.
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Questi sono tre. E il quarto? Il quarto forse ¢ il meno famoso, e ha an-
che un titolo non proprio “accattivante” (Einstein, 1905), ma questo ¢ quello
che fa al caso nostro, perché in questo lavoro Einstein forni una spiegazione
fisica esauriente del moto browniano, legandolo all’agitazione termica delle
molecole d’acqua che urtano i granelli in sospensione, e calcolo il Numero di
Avogadro.

O meglio, non calcolo il suo valore numerico, su quello torneremo in se-
guito, dimostro invece una formula matematica che permetteva di calcolarlo
a partire da quantita macroscopiche esplicitamente verificabili, dando cosi
anche una fondazione definitiva della teoria della diffusione.

La formula di Einstein ¢

RTt

Np= ——F—
A7 3rpa X2(t)’

4)
dove a ¢ il raggio delle particelle, p la viscosita del fluido, R la costante dei
gas, T la temperatura e X 2(t) la distanza quadratica media delle particelle al
tempo ¢.

L’idea di Einstein per ottenere (4) ¢ profonda ed elegante, ma in fondo ab-
bastanza semplice (e quindi davvero geniale), tanto semplice da poter essere
raccontata (forse un po’ maldestramente) in queste poche pagine. Si tratta di
usare due ingredienti per scrivere una quantita in due modi diversi, uguagliare
e semplificare (i vecchi trucchi dell’algebra tornano utili a volte, ma serve un
guizzo). I due ingredienti usati sono il concetto di attrito viscoso su una pallina
in movimento in un fluido (che era stato quantificato da George Gabriel Sto-
kes, baronetto per meriti scientifici, corrispondente a una forza F' = 67 uav,
dove v rappresenta la velocita del fluido) e la forza di pressione osmotica
(determinata da Jacobus Henricus van ’t Hoff Jr., primo Premio Nobel in
Chimica, che puo essere vista come una riformulazione della Legge dei gas
perfetti pV' = nRT, dove p ¢ la pressione, V' ¢ il volume, e n il numero di
moli).

In questo modo, denotando con w la densita delle particelle in moto attra-
verso 1l fluido, da una parte si osserva che

0 : :
=20 perché la forza su una particella corrisponde
u alla variazione di pressione per unita di massa
1. nRT : . :
= —0, 7 avendo usato la legge di pressione osmotica
u
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= lﬁx NRT perché, per definizione di Numero di Avogadro,
u NaV il numero di particelle N ¢ uguale
al numero di moli n
per il Numero di Avogadro N4
= lam ulitl perché, per definizione, la densita u di particelle,
u " Na ¢ il numero di particelle N
diviso il volume occupato V'
= R Ou perché R e N4 sono costanti (5)
Ny u

e la temperatura 7' ¢ mantenuta
costante durante il processo.

D’altra parte, il flusso ¢ di particelle attraverso una sezione S del con-
dotto ¢ dato dal numero di particelle d/N che passano nell’unita di tempo dt.
Considerando un volume infinitesimale del condotto dV' = S dz, possiamo
scrivere questo flusso come

dN  udV  uSdx
. dt  dt
I1 flusso ¢ di particelle tuttavia ¢ anche la variazione del numero totale di
particelle situate nel condotto prima della sezione considerata, che pensiamo
situata lungo la coordinata x. Il numero totale di queste particelle prima di =
corrisponde al totale della densita di particelle per il volume del condotto pri-
ma di z, ovvero (considerando un modello di tubo orizzontale “infinitamente

lungo”)
S / u

e il corrispondente flusso ¢ quindi

b =0, (S/:Ou) :S/_;(‘?tu:cS/:Oamu, (7)

dove abbiamo usato I’equazione di diffusione (2) per descrivere il moto bro-
wniano delle particelle nel fluido.
Confrontando (6) e (7) vediamo che

¢ = = uSv. (6)

¢ X
uv = — = c/ Ozzl. (8)
S —c0
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Otteniamo quindi

F = 6mpav per la Legge di Stokes
6 L ..
_ Jrpauy avendo moltiplicato e diviso per u
u
6 x
_ 2mHac / Ozzu  avendo usato la (8)
u — 00
6 : .
— JTpac Oxu perché un integrale “cancella” una derivata.
u

Confrontando questa relazione con la (5), abbiamo che

ﬂ@xu - F
Nag u u

_ bmpac

O

e quindi, risolvendo in N 4 e semplificando,

RT

- 6mpac’

Ny )

Questa ¢ (quasi) la formula desiderata! La buona notizia ¢ che abbiamo
trovato in questo modo una relazione esplicita per il Numero di Avogadro.
La cattiva notizia ¢ che questa formula coinvolge ancora una quantita “igno-
ta” e forse non direttamente misurabile, cio¢ il coefficiente di diffusione c.
Ma poco male, possiamo ricavare questo coefficiente misurando la distanza
percorsa, in media, da una particella. Infatti, si puo controllare che una so-

luzione dell’equazione di diffusione (2) (in una variabile x, corrispondente
all’elongazione nel tubo) ¢ data dalla Gaussiana®

Gz,1) = 4# (10)

3Torneremo sulla Gaussiana nella Sezione 7. A livello notazionale, per gli amanti della teo-
ria della probabilita, ¢ utile osservare che la Gaussiana (a media nulla) in termini probabilistici
¢ a volte scritta come

No(z) ==

! ex 2
V2ro? P 202 )
dove la quantita ¢ > 0 ¢ chiamata “varianza” e descrive lo scarto quadratico dalla media
aritmetica, in quanto
“+oo
/ 2* Ny (x) de = 0.
— o0

Si noti I’analogia con (11).
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Questa soluzione descrive, in media, la densita di probabilita di una parti-
cella soggetta a moto browniano che comincia la sua traiettoria casuale nell’o-
rigine delle coordinate. La distanza quadratica media delle particelle al tempo
t ¢ quindi data dalla quantita

_+oo 2 2
= / ‘ exp —’—' dx
oo NATct 4ct
At [TO°
= ﬁ y2 cXp (—|y|2) dy
= 2ct. (1D

Inserendo questa relazione in (9) si ottiene (4).

6. COME VINCERE IL NOBEL

La grandezza della relazione in (4) ¢ che riduce il calcolo del Numero di
Avogadro alla misurazione di quantita macroscopiche. Questa misurazione,
soprattutto all’inizio del Ventesimo secolo, era comunque abbastanza delica-
ta, richiedendo la preparazione accurata di sferette identiche e di raggio noto.
La prima verifica della relazione di Einstein arrivo nel 1908 e venne effettua-
ta da Jean Baptiste Perrin, che per questo fu insignito* nel 1926 del Premio
Nobel. Per una presentazione dettagliata dell’esperimento di Perrin e del suo
legame con la teoria fondata da Einstein si veda Newburgh ef al. (2006) e
Cossetto (2012).

*Nel discorso di premiazione, disponibile su https://www.nobelprize.org/prizes/physics/
1926/ceremony-speech/, consultato il 18 settembre 2025, si riconosce il contributo di Einstein
al lavoro di Perrin: «The object of the researches of Professor Jean Perrin which have gained for
him the Nobel Prize in Physics for 1926 was to put a definite end to the long struggle regarding
the real existence of molecules. [...] His measurements on the Brownian movement showed that
Einstein’s theory was in perfect agreement with reality. Through these measurements a new
determination of Avogadro’s number was obtained».
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PARTE SECONDA — DIFFUSIONE ANOMALA

7. UN CAMBIAMENTO DI PARADIGMA?

Il Numero di Avogadro ha 24 cifre. E azzeccare un numero di 24 cifre non
succede mica per caso. Per cui, all’inizio del Novecento, possiamo pensare
che la diffusione sia diventata un “paradigma” consolidato. Una delle cose
belle della scienza, pero, consiste nella sua capacita di andare oltre le certezze,
di mettersi sempre in discussione, di provare sempre qualcosa di nuovo. A
un’analisi piu approfondita, sembra che la diffusione standard abbia qualche
problema a descrivere accuratamente 1 fenomeni piu complessi in natura.

Un esempio interessante di possibili discrepanze tra il modello di diffu-
sione classico e misurazioni concrete si osserva nei mercati finanziari, come
puntualizzato in Tintner (1940) e Mandelbrot (1967). Raccogliendo le oscil-
lazioni (ad esempio mensili) di un prodotto (ad esempio la lana) ci possiamo
aspettare che (in assenza di altri fenomeni) la media di queste oscillazioni sia
nulla e che la maggior parte di queste oscillazioni sia “piccola” (la lana tra
un mese costera forse un po’ di piu, forse un po’ di meno di quel che costa
oggi). Potremmo quindi disegnare un istogramma in cui sull’asse orizzontale
si pone la variazione di prezzo (che puo essere positiva o negativa, e “discre-
tizzata” in intervalli di prezzo, ad esempio $2.50) ¢ in verticale il numero di
casi in cui tale variazione viene realizzata (all’interno della discretizzazione
scelta). L’istogramma della Fig. 5 a pagina 167 di Tintner (1940) conferma la
nostra intuizione che questa distribuzione di prezzi sia in effetti circa a me-
dia nulla e che la maggior parte dei valori “alti” corrispondano a variazioni
piccole (c’¢ un picco nello zero delle variazioni).

Se crediamo al paradigma della diffusione classica, dobbiamo assume-
re che questo istogramma rappresenta una discretizzazione della Gaussia-
na (10). Per trovare la Gaussiana che approssima meglio 1’istogramma, po-
tremmo pensare di calcolare la varianza dei dati raccolti e scegliere quin-
di la Gaussiana corrispondente alla varianza trovata (secondo la terminolo-
gia discussa nella nota 3). Il risultato ¢ quello descritto in Tintner (1940): la
Gaussiana selezionata non ¢ per nulla soddisfacente, ¢ troppo “schiacciata”
¢ manca completamente i valori piu alti della distribuzione, correspondenti
proprio alle piccole oscillazioni di prezzo che sappiamo rappresentare il caso
piu frequente!

Cosi non va bene. Ma cos’¢ andato storto? Per svelare il mistero, suppo-
niamo per un attimo che la varianza o dei dati raccolti sia molto grande. Que-
sto (ricordando la notazione nella nota 3) produrrebbe una Gaussiana molto
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schiacciata, proprio come succede in Tintner (1940). Cio suggerirebbe che
la variazione dei prezzi rappresentata in Tintner (1940) potrebbe avere so-
stanzialmente variazione “infinita” (nell’astrazione matematica di poter rac-
cogliere infiniti dati), per cui I’approssimazione ottenuta con la Gaussiana
risulta insoddisfacente, perche troppo schiacciata, e raccogliere ulteriori dati
non risolverebbe la questione.

Ma ¢ veramente possibile che una varianza sia infinita? Questa ¢ una do-
manda spinosa, che ha prodotto vari disaccordi tra scienziati di valore; si veda
ad esempio Mandelbrot (1961) e le referenze ivi citate. Diciamocelo, chi la-
scia la strada vecchia per la nuova, ecc.: abbandonare la diffusione classica,
che tanti successi ha riscosso, rischia di essere un salto nel buio:

la diffusione classica ha una chiara (12)
interpretazione in termini statistici
(come descritto nella Sezione 3.2)

la Gaussiana ¢ una distribuzione “stabile’ (13)
(cio¢ la somma di variabili aleatorie

indipendenti con distribuzioni Gaussiane

ha essa stessa una distribuzioni Gaussiana),

per cui nessuna mente razionale abbandonerebbe il paradigma della diffusio-
ne classica a meno che queste due proprieta non vengano preservate anche in
caso di varianze infinite!

8. UN PARADIGMA ALTERNATIVO

In realta la maggior parte delle volte la scienza rivoluzionaria non cambia
un paradigma: nuove idee, nuove spiegazioni, nuovi paradigmi emergono e
coesistono con le strutture precedenti, per comprendere sfaccettature diverse
della complessita del mondo che ci circonda. Quindi, anche in questo caso,
I’obiettivo non ¢ “affondare” il paradigma della diffusione classica, quanto
quello di fondare un’alternativa coerente, che possa trattare anche fenomeni
diversi.

Per questo scopo comunque ¢ necessario capire se (12) e (13) rimangono
valide, in qualche senso, in un nuovo paradigma che comprenda anche distri-
buzioni con infinita varianza e possa rendere giustiza al dilemma offerto da
Tintner, 1940. Anzitutto, situazioni di questo tipo furono considerate da Be-
noit Mandelbrot (il famoso matematico noto per 1 suoi lavori sulla geometria
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frattale) alla luce della teoria delle distribuzioni “a-stabili” introdotta da Paul
Lévy (Lévy, 1925; Mandelbrot, 1967). In poche parole, I’idea di Lévy era che
la proprieta (13) non fosse esclusiva delle Gaussiane: in sostanza, la (13) se-
gue dal fatto che la funzione caratteristica di una variabile aleatoria Gaussiana
¢ anch’essa Gaussiana, e che il prodotto di Gaussiane ¢ anch’essa Gaussiana,
ma una situazione similmente ““stabile” si produrrebbe se le funzioni caratteri-
stiche delle variabili aleatorie in questione non fossero Gaussiane, ma oggetti
del tipo exp(—|£|“), dove il parametro « varia tra 0 e 2 (con il caso della
diffusione classica riprodotto quando o = 2).

Con questa formulazione, ¢ possibile riprodurre la “stabilita” osservata
nella (13) (tuttavia, la varianza corrispondente ai casi a € (0,2) ¢ infinita):
si veda I’Appendice C per ulteriori dettagli.

Grazie al lavoro di Lévy ¢ anche possibile dare una solida interpreta-
zione statistica a una variante® “anomala” e “nonlocale” dell’equazione di
diffusione (2), che si puo scrivere come

du = —(—A)Yu, (14)

dove (—A)®/2 rappresenta I’operatore di Laplace frazionario, con o € (0, 2).
Si veda I’ Appendice D per ulteriori dettagli.

9. ’ANOMALO E LA NORMA

La diffusione anomala non ¢ stata riscontrata solo nei modelli finanziari
descritti in Tintner, 1940. Anzi, ¢ apparsa in varie occasioni in modelli di
matematica biologica, anche per descrivere (tra varie controversie) il modo
con cui varie specie animali si muovono nell’ambiente (Hapca et al., 2009;
Seuront et al., 2014; Harasti et al., 2015; Mann et al., 2015; Broadbridge
et al., 2022), in modelli di trasmissione neurale (Lamanna et al., 2024), nei
nanotubi di carbonio (Wang e Chen, 2022), vortici ottici (Gong et al., 2024),
ecc., e ’interpretazione stessa dei dati sperimentali legati a meccanismi di
diffusione anomala ¢ spesso alquanto complessa e richiede a volte 1’uso di
intelligenza artificiale (Mufioz-Gil et al., 2021).

>In queste poche pagine ci occuperemo, e solo in maniera superficiale, di un tipo di diffusio-
ne anomala, corrispondente a un’equazione nonlocale nelle variabili spaziali. Altre diffusioni
anomale emergono naturalmente in molti altri contesti, ad esempio in presenza di operatori
di diffusione nonlineari, equazioni di mezzi porosi, ecc., si veda ad esempio (Vazquez, 2007;
Daskalopoulos e Kenig, 2007) e le referenze ivi contenute per maggiori informazioni su altri
tipi di diffusione anomala.
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Una pittoresca visualizzazione dei possibili “lunghi salti” legati al con-
cetto di diffusione anomala potrebbe essere offerta dal sito “Where’s Geor-
ge?” https://www.wheresgeorge.com/. George in questo caso sarebbe George
Washington, che campeggia sulla banconota da un dollaro americano. I sito
traccia la circolazione geografica di alcune banconote e, secondo Brockmann
et al. (2006) «the distribution of travelling distances decays as a power law,
indicating that trajectories of bank notes are reminiscent of scalefree random
walks known as Lévy flights».6

10. L’IMPORTANZA DI ESSERE ANOMALO: TUTTE LE FUNZIONI SONO
a-ARMONICHE

Ma la diffusione anomala € poi cosi anomala? Non ¢ che alla fine, al di la di
qualche dettaglio tecnico, il mondo “anomalo” finisce per essere una qualche
copia di quello classico, con qualche piccola deformazione che interessa al
massimo qualche matematico con troppo tempo a disposizione?

Dunque, anzitutto, la diffusione anomala presenta delle differenze struttu-
rali profonde e significative, si veda ad esempio la Sezione 2 in Abatangelo
e Valdinoci (2019) per una lista di dieci differenze tra I’operatore classico di
Laplace e la sua versione nonlocale in (14).

Una delle differenze piu significative, a nostro avviso, consiste nel fatto
che «tutte le funzioni sono localmente a-armoniche, a meno di un piccolo
errore», come mostrato in Dipierro et al. (2017).

Per capire questo enunciato, consideriamo anzitutto il caso classico. Una
funzione “armonica” (cio¢ con Laplaciano nullo) ¢ davvero molto speciale.
In particolare, non puo avere massimi o minimi locali: ad esempio, un pa-
raboloide non puo essere armonico, perché il suo Laplaciano ¢ una costante
(non nulla), e in una dimensione le funzioni armoniche sono solo rette (o,
localmente, porzioni di rette).

Il caso dell’a-Laplaciano ¢ invece completamente diverso. A meno di un
piccolo errore, ogni funzione puo essere localmente a-armonica. In partico-
lare, funzioni a-armoniche possono sviluppare massimi € minimi locali, fun-
zioni a-armoniche possono essere localmente molto simili a paraboloidi, o a
quello che vogliamo noi. Piu precisamente, data una qualsiasi regione dello

Ad esempio, secondo Where’s George? Bill tracking report, la banconota da un dollaro
«Serial# L6031—S5A Series: 2001 [...] has traveled at least 27,775 Miles in 8 Yrs, 242 Days, 16
Hrs, 49 Mins at an average of 8.8 Miles per day. The bill is now 1,528 Miles from its starting
locationy (https://wg4.us/b:ovulyvTrS, consultato il 18 settembre 2025).
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spazio, una qualsiasi funzione e un qualsiasi errore fissato, possiamo trovare
una funzione c-armonica nella regione assegnata che dista, in questa regione,
dalla funzione data meno dell’errore assegnato.

Fig. 4 — La funzione data vy (in rosso), un e-intorno della funzione data (in giallo),
la funzione a-armonica u.. Immagine prodotta dagli autori.

O se preferite, data una funzione qualsiasi in una regione qualsiasi, a meno
di “aggiustarla” arbitrariamente poco in questa regione e “completarla” op-
portunamente fuori da questa regione, possiamo sempre ottenere una funzione
a-armonica, si veda Fig. 4.
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In matematichese:

Teorema 1 Dato « € (0,2), data una palla B C Ri, data una funzione uy €
C?(B) e dato € > 0, esiste una funzione u. € C?(B) N C.(RY) tale che

(=A)*?u, =0 in B,
Ju—uel g2y < e

Saremo di parte, ma secondo noi il Teorema 1 ¢ proprio un bel teorema.
E come tutti 1 bei teoremi ha anche delle belle applicazioni. Per esempio,
una delle sue conseguenze ¢ che una popolazione che utilizza una strategia di
insediamento nonlocale puo utilizzare al meglio le risorse ambientali in una
regione strategica assegnata, riducendo all’osso gli sprechi, cosa che invece
non ¢ possibile a popolazioni che utilizzano il paradigma diffusivo classico.

Per descrivere meglio questo risultato, ricordiamo 1’equazione logistica
della dinamica delle popolazioni. In questo contesto, possiamo pensare di
avere una densita di popolazione u(x,t) che evolve in base alle seguenti
considerazioni:

* se la densita di popolazione ¢ bassa, il tasso di incremento della popo-
lazione ¢ proporzionale alla risorsa ambientale p(z);

* se la densita di popolazione ¢ troppo alta, si innescano meccanismi di
competizione, che impediscono crescite smisurate della popolazione
stessa,

* la popolazione si sposta nell’ambiente rispetto a un’operatore di diffu-
sione L.

In matematichese, questo si puo tradurre nell’equazione
Ou=Lu+ (p—u)u inbB, (15)

dove la palla B ¢ la regione strategica che stiamo considerando.
In una condizione di equilibrio, la soluzione u ¢ stazionaria (cio¢ indipen-
dente dal tempo) e la (15) si riduce a

—Lu=(p—u)u in B, (16)
con u = u(x).
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Ora, una delle conseguenze del Teorema 1 ¢ che la situazione ¢ molto
diversa se la diffusione della popolazione ¢ classica (con £ uguale all’opera-
tore di Laplace) o nonlocale (in cui £ & uguale a —(—A)*/2 con o € (0, 2)).
Infatti, la popolazione nonlocale puo utilizzare ottimamente quasi tutta la ri-
sorsa, mentre quella classica, in generale, no. Piu precisamente, nel caso in
cui L = —(—=A)*2 con a € (0,2), data p € C*(R?) con p = 0 fuori
da B, e dato € > 0 piccolo a piacere, esiste una risorsa p. vicina a quella data
(nel senso che ||p — pc|| L=(B) < €) e una soluzione u. della corrispondente

equazione logistica nonlocale
(—A)O‘/2u€ = (pe — uc)us in B, (17)

con u:. = 0 su OB e in grado di consumare tutta la risorsa senza sprechi
(cio€ ues > pe in B; si veda I’ Appendice E per una dimostrazione di questo
fatto).

Questa proprieta ¢ tipica esclusivamente della diffusione nonlocale e un
risultato del genere non ¢ vero nel caso della diffusione classica, si veda
I’ Appendice F.

Varie applicazioni di questo tipo della teoria della diffusione nonlocale a
modelli di biologia sono state proposte in Caffarelli ez al. (2017).

APPENDICI

A. DALLA (1) ALL'EQUAZIONE DEL CALORE

Per vedere come la (1) produca la (2), possiamo assumere, a meno di tra-
slazioni spaziali, che x = 0, dividere per 7 = p?*? e prendere il limite
per 7 — 0. Effettuiamo il calcolo nel caso unidimensionale d = 1 (il ca-
so multidimensionale non ¢ molto piu difficile, ma richiede la cancellazione
di alcuni termini per motivi di “simmetria”).

In questo modo, dalla (1) si ottiene, almeno formalmente,

ou(0.4) = lim u(0,t + 7) —u(0,1)

7—0 T

= lim C—g /p (u(y,t) —u(0,1)) dy.

p—0 p —p
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Ora, uno sviluppo di Taylor del tipo
1
u(y,t) = u(0,1) + 0u(0,) y + 50;u(0,) y* + O(ly[")
conduce a

p 1
Oru(0,1) = lim %/ (&CU(OJ) Y+ §3§U(0,t) ¥ + 0(\9\3)> dy.
—pP

La funzione che associa a y la quantita 0,u(0,t)y ¢ dispari (cambiando
il segno di y, cambiamo il segno di questa quantitd), per cui il suo contributo
sull’intervallo simmetrico ¢, in media, nullo, infatti

/_Z Ou(0,1) y dy = Du(0, 1) (%2 _ <_2p)2> _o.

Inoltre, se y appartiene all’intervallo (—p, p), abbiamo che |y|?> < p3 e
quindi

/ " O(lyP) dy = 0(5").

Da queste considerazioni, vediamo che

. c P
o(0.6) = 1im 7% " 92u(0. 009 dy + O(p)
—p

€o

o
_ fm Y 2 2
= ;1)1—I>% 20 /_p Ozu(0,t)y” dy

— %Oagu(o,t),

: : e
che corrisponde alla (2) con, in questo caso, ¢ := .
B. DALLA (3) ALL’EQUAZIONE DEL CALORE

Come nell’ Appendice A, effettuiamo il calcolo nel caso unidimensiona-
le d = 1 (il caso multidimensionale non ¢ molto piu difficile, ma richiede la
cancellazione di alcuni termini per motivi di “simmetria”).

In questo caso, la palla unitaria unidimensionale ¢ il segmento (—1, 1),
il cui bordo sono i due punti —1 e 41, quindi il membro di destra della (3)

diventa
u(x + h,t) + u(x — h,t)

5 .
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Allora, sottraendo u(x, t) ad ambo i membri della (3), dividendo per 7 =
h? e prendendo il limite abbiamo che

u(z,t+71) —u(z,t)

Owu(z,t) = lim
7—0 T
. u(x+ h,t) +u(z — h,t) — 2u(z,t)
= lim
h—0 2h?

1
= Z@gu(x,t),

che corrisponde alla (2) con, in questo caso, ¢ := +.

N

C. DISTRIBUZIONI STABILI E (13)

Consideriamo due variabili aleatorie X e X. Assumiamo che siano indi-
pendenti e che

X e X abbiano funzioni caratteristiche
uguali rispettivamente a exp(—|k&|*) e exp(—|rE|Y), (18)
con k, & > 0 e a € (0,2]. Consideriamo anche la somma X, = X + X di

queste variabili aleatorie.
Mostriamo che

X, ha funzione caratteristica uguale a
exp(—|r&|?), con ky = (K* + R/, (19)
Questa affermazione costituisce un valido analogo della “stabilita” intro-
dotta in (13) per la diffusione classica (corrispondente a « = 2) nel caso di
distribuzioni con varianza infinita (corrispondente a o € (0, 2)).

Per convincerci della (19), osserviamo che (denotando la funzione carat-
teristica nello spazio di probabilita con la lettera C),

Cx.(§) == / e2mEX g = / 2miE(X+X) gp
= / 2N miEX gp = / X g / 2miEX qp.

in cui I'ultima uguaglianza ¢ dovuta all’indipendenza delle variabili aleato-
rie X e X.
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Quindi, usando (18),

Cx. (€) = / 2miEX P / % gP = Cx (€) Cx (€)
— exp(—|wEl") exp(—|RE|") = exp ( — (k% + R)I]°),

che conduce alla (19).

D. INTERPRETAZIONE STATISTICA DELL’EQUAZIONE NONLOCALE DEL
CALORE

Questa ¢ una variante “a lungo raggio” dell’Appendice B. Consideriamo
la densita di probabilita u(x, t) di trovare una particella nel punto x al tempo ¢
e scriviamo che u(x, t + 7) corrisponde alla media delle densita di probabili-
ta u(x +hr, t) di trovare una particella in un punto x & hr al tempo ¢ moltipli-
cate per la densita di probabilita P(r) corrispondente a un salto di lunghezza r
(dove 7 e h sono piccoli incrementi temporali e spaziali, rispettivamente):

+oo
u(x,t+71) = % /0 (w(z + hr,t) + u(z — hr,t)) P(r) dr.

Sottraendo u(x,t) ad ambo i membri, dividendo per 7 = h® e passando
formalmente al limite, otteniamo

Oru(z, t)
— lim u(z, t+71) —u(z,t)
7—0 T
. 1 +o0
= }lllir(lj 25 /0 (u(x + hr,t) + u(z — hr,t) — 2u(z,t)) P(r) dr

) 1 400 y
= 0 ghatt /0 (u(a +9.t) + ulw = y.1) = 2u(, 1)) P (3) dy.
(20)

In questo caso, la probabilita di salto della particella ¢ determinata da
una distribuzione a-stabile come quelle descritte nell’ Appendice C, con a €

(0,2).
Supponiamo quindi che la corrispondente funzione caratteristica sia
exp(—|ré["),
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con k > 0.
Allora,

P(X € [r,r+p]) :P<Xp_r_%€ [_%%D

X—-r 1
-/ x[_l/z,m]( : —5) ®. @

Osserviamo ora che per una funzione (liscia e a decrescenza rapida) ¢
possiamo considerare la Trasformata di Fourier e ottenere che

o e ([0
[0 (5 a)

-/ o) ex (é) e 2 i(5+8)¢ ge

©)

P
= [ e (SRR )

p

=p %) a ) Y
/ A(On) exXp (‘ K |77‘04) e—27‘rz(r+5)n .

+o0 +oo
=p/ e(x) dw_/ exp (—2minr) exp (—=£%[n|*) dn + o(p).

— 00 — 00

Applicando, con un po’ di flessibilita analitica, questa osservazione con

¥ = X[-1/2,1/2)>
si ottiene da (21) che
+00
P(X € lrr ) =p [ exp(~2rinr) exp (~w"[al®) di -+ ofp).

Possiamo allora determinare la corrispondente densita di probabilita

d

P(r) — d—p(P(XG[r,r+p]))

p=0
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400
= / exp (—2minr) exp (—&%[n|*) dn,

— 00

che ¢ la Trasformata di Fourier della funzione caratteristica.
Notiamo che, integrando per parti e cambiando variabile y := 22,

+00 :
Y 2miny ol o
P<E) :/ exp (— hn > exp (—k*|n|*) dn

o0

+00 2
= 2/ cos (%W) exp (—r“n®) dn
0

+o0 2
_ L d [sin( Whny)] exp (—r“n®) dn

Ty Jo  dn
ap 400 2
— / no! sin( wny) exp (—k“n®) dn
Ty Jo h
ar® hl—i—a 400 a1 K& hoz,uoz
= — “Usin (2 —— ) dp. (22
gita /0 psin (2mp) eXp( " ) pe (22)

Quando h — 0, abbiamo anche (si veda Exercise 2.2.33 in Dipierro e
Valdinoci, 2026)

Y c* hl—i—a

per un qualche ¢* € R dipendente da « e x (e sappiamo che ¢* > 0, visto che
il termine di partenza ¢ positivo).
Possiamo allora utilizzare questa informazione nella (20) e ottenere che

* —+00
t —y,t) — 2 t
oty = & [ U H 0+ ule—yit) ~ 2ua,
2 0 y +a

dy.

E. LA DIFFUSIONE NONLOCALE PUO USARE AL MEGLIO LE RISORSE
AMBIENTALI

Sia 15 una palla concentrica a B e di raggio doppio. Tramite il Teorema 1,
troviamo una funzione . € C?(B) N C.(RY) tale che

{(—A)a/%g =0 in B,
£

- ym < —.
1o = pellc (B) = 5
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Sia anche v, la funzione a-armonica in B conv. = g in B\ Bev. =0
in R%\ B.
Notiamo che
N e €
sup |ve| = sup |pe| < sup [p| + 5 = o,
R\ B B\B B\B

e quindi, per il principio di massimo (si veda ad esempio Theorem 3.3.2 in
Bucur e Valdinoci, 2016),

sup |ve| <
Rd

DO M

Sia dunque

Abbiamo che, in B,
(_A)a/zus = (_A)a/zﬁe - (_A)a/zva = 0= (pe — ue)ue.

Inoltre, v. ¢ continua su B (si veda Ros-Oton e Serra, 2014). Quindi,
su 0B,

Ue = pe — Ve =0,
Infine,

10 = pell @) = P = Pe + Vel L )

=£.

DO M

- 3
<llp— PeHLoo(E) + H%HLoo(E) < ) +

F. LA DIFFUSIONE CLASSICA PUO “SPRECARE” LE RISORSE AMBIENTALI

La proprieta descritta dopo la (17) ¢ squisitamente nonlocale e non ¢ ve-
rificata in genere nel caso di diffusione standard. Per convincerci di questo
fatto, consideriamo il caso unidimensionale, in cui B = (—1, 1) e prendiamo
una funzione p € C2° ((—1, 1)) tale che p(0) = 1.

Supponiamo di aver trovato una nuova distribuzione di risorsa p. tale
che ||p — pel| o ((—1,1)) < € € una soluzione della corrispondente equazione
logistica classica

—u; = (pe — Ue)ue in (—1,1)
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con
ue(=1) = ue(1) = 0 (23)

e us > pe in (—1, 1) (assumendo ¢ piccolo a piacere).

Allora, in (—1, 1), abbiamo che u” = (us — ps)us > 0, cio¢ u. € convessa
e quindi, da (23), abbiamo che u.(0) < 0.

Da queste considerazioni, segue che

0 =uc(0) = pe(0) = p(0) —e =1 —e¢,

che produce una contraddizione quando € < 1.
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