Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Articles

V. 10 N. 2 (2025)

Evaluating Robotics Technologies for Grape Cultivation: A Comparative Analysis of Current Solutions

DOI
https://doi.org/10.3280/riss2025oa20627
Inviata
luglio 14, 2025
Pubblicato
2025-12-16

Abstract

The viticulture sector shows growth potential but faces challenges related to labor shortages, productivity, and quality control. This paper examines various robotic technologies used in grape cultivation and assesses their suitability for addressing these issues. By analyzing the current state of the grape-growing industry and the potential benefits of advanced robotic solutions, this study aims to offer recommendations for integrating robotics to improve efficiency and sustainability.

The research provides an overview and comparison of agricultural robots designed for tasks such as harvesting, spraying, imaging, and adapting to climate change. It also considers the costs of these robots and the infrastructure required for their implementation. Additionally, recommendations are made for large, medium, and small-scale farmers, suggesting suitable robotic technologies based on their income from grape cultivation.

Riferimenti bibliografici

  1. Wang W., Shi Y., Liu W., & Che Z. (2024). An unstructured orchard grape detection method utilizing yolov5s. Agriculture, 14(2), 262. Doi: 10.3390/agriculture14020262.
  2. Jiang Y., Liu J., Wang J., Li W., Peng Y., & Shan H. (2022). Development of a dual-arm rapid grape-harvesting robot for horizontal trellis cultivation. Frontiers in Plant Science, 13. Doi: 10.3389/fpls.2022.881904.
  3. Badeka E., Karapatzak E., Karampatea A., Bouloumpasi E., Kalathas I., Lytridis C. et al. (2023). A deep learning approach for precision viticulture, assessing grape maturity via yolov7. Sensors, 23(19), 8126. Doi: 10.3390/s23198126.
  4. Yin W., Wen H., Ning Z., Ye J., Dong Z., & Luo L. (2021). Fruit detection and pose estimation for grape cluster–harvesting robot using binocular imagery based on deep neural networks. Frontiers in Robotics and AI, 8. Doi: 10.3389/frobt.2021.626989.
  5. Lytridis C., Bazinas C., Kalathas I., Siavalas G., Tsakmakis C., Spirantis T., et al. (2023). Cooperative grape harvesting using heterogeneous autonomous robots. Robotics, 12(6), 147. Doi: 10.3390/robotics12060147.
  6. Vrochidou Ε., Bazinas C., Manios M., Papakostas G., Pachidis T., & Kaburlasos V. (2021). Machine vision for ripeness estimation in viticulture automation. Horticulturae, 7(9), 282. Doi: 10.3390/horticulturae7090282.
  7. Shamshiri R., Weltzien C., Hameed I., Yule I., Grift T., Balasundram S. et al. (2018). Research and development in agricultural robotics: a perspective of digital farming. International Journal of Agricultural and Biological Engineering, 11(4): 1-11. Doi: 10.25165/j.ijabe.20181103.4278.
  8. Zhou H., Wang X., Au W., Kang H., & Chen C. (2022). Intelligent robots for fruit harvesting: recent developments and future challenges. Precision Agriculture, 23(5): 1856-1907. Doi: 10.1007/s11119-022-09913-3.
  9. Yerebakan M. and Hu B. (2024). Human-robot collaboration in modern agriculture: a review of the current research landscape. Advanced Intelligent Systems, 6(7). Doi: 10.1002/aisy.202300823.
  10. Kapetanović N., Goričanec J., Vatavuk I., Hrabar I., Stuhne D., Vasiljević G. et al. (2022). Heterogeneous autonomous robotic system in viticulture and mariculture: vehicles development and systems integration. Sensors, 22(8), 2961. Doi: 10.3390/s22082961.
  11. Tziolas E., Karapatzak E., Kalathas I., Karampatea A., Grigoropoulos A., Bajoub A. et al. (2023). Assessing the economic performance of multipurpose collaborative robots toward skillful and sustainable viticultural practices. Sustainability, 15(4), 3866. Doi: 10.3390/su15043866.
  12. Savina O. (2023). The impact of climate change on grape crops development in western Ukraine. Revista De La Universidad Del Zulia, 15(42): 37-57. Doi: 10.46925//rdluz.42.03.
  13. Suresh D. (2024). Climate change adaptation strategies for grape cultivation in yamanashi prefecture of Japan. Rural and Regional Development, 2(1): 10001-10001. Doi: 10.35534/rrd.2024.10001.
  14. Perez-Exposito J., Fernández‐Caramés T., Fraga‐Lamas P., & Castedo L. (2017). Vinesens: an eco-smart decision-support viticulture system. Sensors, 17(3), 465. Doi: 10.3390/s17030465.
  15. Jejčič V., Godeša T., Hočevar M., Širok B., Malneršič A., Štancar A. et al. (2011). Design and testing of an ultrasound system for targeted spraying in orchards. Strojniški Vestnik ‒ Journal of Mechanical Engineering, 7-8(57): 587-598. Doi: 10.5545/sv-jme.2011.015.
  16. Stajnko D., Berk P., Lešnik M., Jejčič V., Lakota M., Štrancar A. et al. (2012). Programmable ultrasonic sensing system for targeted spraying in orchards. Sensors, 12(11): 15500-15519. Doi: 10.3390/s121115500.
  17. Oberti R., Marchi M., Tirelli P., Calcante A., Hočevar M., Baur J. et al. (2013). Selective spraying of grapevine’s diseases by a modular agricultural robot. Journal of Agricultural Engineering, 44(2s). Doi: 10.4081/jae.2013.271.
  18. Gil E. and Rosell-Polo J. (2013). Variable rate sprayer. part 2 – vineyard prototype: design, implementation, and validation. Computers and Electronics in Agriculture, 95: 136-150. Doi: 10.1016/j.compag.2013.02.010.
  19. Majeed Y., Karkee M., Zhang Q., Fu L., & Whiting M. (2021). Development and performance evaluation of a machine vision system and an integrated prototype for automated green shoot thinning in vineyards. Journal of Field Robotics, 38(6): 898-916. Doi: 10.1002/rob.22013.
  20. Cara S. (2023). The impact of dynamic meteorological conditions in the atu gagauzia on the growth and development of grapevines. Journal of Biometry Studies, 3(2): 39-46. Doi: 10.61326/jofbs.v3i2.03.
  21. Yan Y., Song C., Falginella L., & Castellarin S. (2020). Day temperature has a stronger effect than night temperature on anthocyanin and flavonol accumulation in ‘merlot’ (vitis vinifera l.) grapes during ripening. Frontiers in Plant Science, 11. Doi: 10.3389/fpls.2020.01095.
  22. Gaiotti F., Pastore C., X Filippetti C., Lovat L., Belfiore N., & Tomasi D. (2018). Low night temperature at veraison enhances the accumulation of anthocyanins in corvina grapes (vitis vinifera l.). Scientific Reports, 8(1). Doi: 10.1038/s41598-018-26921-4.
  23. Botta A., Cavallone P., Baglieri L., Colucci G., Tagliavini L., and Quaglia G. (2022). A Review of Robots, Perception, and Tasks in Precision Agriculture. Applied Mechanics, 3(3): 830-854. Doi: 10.3390/applmech3030049.
  24. Hutsol T., Kutyrev A., Kiktev N. and Biliuk M. (2023). Robotic Technologies in Horticulture: Analysis and Implementation Prospects. Agricultural Engineering, 27(1): 113-133. Doi: 10.2478/agriceng-2023-0009.
  25. Hajjaj S. S. H. and Sahari K. S. M. (2016). Review of agriculture robotics: Practicality and feasibility. 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Tokyo, Japan, pp. 194-198, doi: 10.1109/IRIS.2016.8066090.
  26. Wang Y. Q., Fan J. C., Yu S., Cai S. Z., Guo X. Y., Zhao C. J. (2023). Research advance in phenotype detection robots for agriculture and forestry. Int J Agric & Biol Eng., 16(1): 14-25. Doi: 10.25165/j.ijabe.20231601.7945.
  27. Amin A., Wang X., Zhang Y., Tianhua L., Chen Y., Zheng J., Shi Y., Abdelhamid M. A. (2023). A Comprehensive Review of Applications of Robotics and Artificial Intelligence in Agricultural Operations. Studies in Informatics and Control, 32(4): 59-70. Doi: 10.24846/v32i4y202306.
  28. Zhou H., Wang X., Au W., Kang H., & Chen C. (2021). Intelligent robots for fruit harvesting: recent developments and future challenges. Precision Agriculture, 23: 1856-1907. Doi: 10.1007/s11119-022-09913-3.
  29. Fountas S., Mylonas N., Malounas I., Rodias E., Santos C., & Pekkeriet E. (2020). Agricultural Robotics for Field Operations. Sensors (Basel, Switzerland), 20. Doi: 10.3390/s20092672.
  30. Bac C., Henten E., Hemming J., & Edan Y. (2014). Harvesting Robots for High‐value Crops: State‐of‐the‐art Review and Challenges Ahead. Journal of Field Robotics, 31. Doi: 10.1002/rob.21525.
  31. Roshanianfard A., Noguchi N., Ardabili S., Mako C., & Mosavi A. (2022). Autonomous Robotic System for Pumpkin Harvesting. Agronomy. Doi: 10.3390/agronomy12071594.
  32. Henten E., Hemming J., Tuijl B., Kornet J., Meuleman J., Bontsema J., & Os E. (2002). An Autonomous Robot for Harvesting Cucumbers in Greenhouses. Autonomous Robots, 13: 241-258. Doi: 10.1023/A:1020568125418.
  33. Droukas L., Doulgeri Z., Tsakiridis N., Triantafyllou D., Kleitsiotis I., Mariolis I., Giakoumis D., Tzovaras D., Kateris D., & Bochtis D. (2022). A Survey of Robotic Harvesting Systems and Enabling Technologies. Journal of Intelligent & Robotic Systems, 107. Doi: 10.1007/s10846-022-01793-z.
  34. Lytridis C., Bazinas C., Kalathas I., Siavalas G., Tsakmakis C., Spirantis T., Badeka E., Pachidis T., & Kaburlasos V. (2023). Cooperative Grape Harvesting Using Heterogeneous Autonomous Robots. Robotics. Doi: 10.3390/robotics12060147.
  35. Tanigaki, K., Fujiura, T., Akase, A., & Imagawa, J. (2008). Cherry-harvesting robot. Computers and Electronics in Agriculture, 63: 65-72. Doi: 10.1016/J.COMPAG.2008.01.018.
  36. Arad B., Balendonck J., Barth R., Ben-Shahar O., Edan Y., Hellström T., Hemming J., Kurtser P., Ringdahl O., Tielen T., & Tuijl B. (2020). Development of a sweet pepper harvesting robot. Journal of Field Robotics, 37: 1027-1039. Doi: 10.1002/rob.21937.
  37. Herck L., Kurtser P., Wittemans L., & Edan Y. (2020). Crop design for improved robotic harvesting: A case study of sweet pepper harvesting. Biosystems Engineering, 192: 294-308. Doi: 10.1016/j.biosystemseng.2020.01.021.
  38. Wang J., Zhang Z., Luo L., Zhu W., Chen J., & Wang W. (2021). SwinGD: A Robust Grape Bunch Detection Model Based on Swin Transformer in Complex Vineyard Environment. Horticulturae. Doi: 10.3390/horticulturae7110492.
  39. Wu N., Huang H., Meng X., Xiong Y., & Li S. (2023). Design and Kinematic Modeling of Grape Picking Robot Arm. Proceedings of the 7th International Conference on Computer Science and Application Engineering. Doi: 10.1145/3627915.3628088.
  40. Luo L., Tang Y., Zou X., Ye M., Feng W., & Li G. (2016). Vision-based extraction of spatial information in grape clusters for harvesting robots. Biosystems Engineering, 151: 90-104. Doi: 10.1016/J.BIOSYSTEMSENG.2016.08.026.
  41. Liu J., Liang J., Zhao S., Jiang Y., Wang J., & Jin Y. (2023). Design of a Virtual Multi-Interaction Operation System for Hand-Eye Coordination of Grape Harvesting Robots. Agronomy. Doi: 10.3390/agronomy13030829.
  42. Chen J., Ma A., Huang L., Su Y., Li W., Zhang H., & Wang Z. (2023). GA-YOLO: A Lightweight YOLO Model for Dense and Occluded Grape Target Detection. Horticulturae. Doi: 10.3390/horticulturae9040443.
  43. Xiong J., Liu Z., Lin R., Bu R., He Z., Yang Z., & Liang C. (2018). Green Grape Detection and Picking-Point Calculation in a Night-Time Natural Environment Using a Charge-Coupled Device (CCD) Vision Sensor with Artificial Illumination. Sensors (Basel, Switzerland), 18. Doi: 10.3390/s18040969.
  44. Oberti R., Marchi M., Tirelli P., Calcante A., Iriti M., Tona E., Hočevar M., Baur J., Pfaff J., Schütz C., & Ulbrich H. (2016). Selective spraying of grapevines for disease control using a modular agricultural robot. Biosystems Engineering, 146: 203-215. Doi: 10.1016/J.BIOSYSTEMSENG.2015.12.004.
  45. Monta M., Kondo N., & Shibano Y. (1995). Agricultural robot in grape production system. Proceedings of 1995 IEEE International Conference on Robotics and Automation, 3(3): 2504-2509. Doi: 10.1109/ROBOT.1995.525635.
  46. Oberti R., Marchi M., Tirelli P., Calcante A., Iriti M., Hočevar M., Baur J., Pfaff J., Schütz C., & Ulbrich H. (2013). Selective spraying of grapevine’s diseases by a modular agricultural robot. Journal of Agricultural Engineering, 44: 149-153. Doi: 10.4081/JAE.2013.271.
  47. Adamides G., Katsanos C., Parmet Y., Christou G., Xenos M., Hadzilacos T., & Edan Y. (2017). HRI usability evaluation of interaction modes for a teleoperated agricultural robotic sprayer. Applied ergonomics, 62: 237-246. Doi: 10.1016/j.apergo.2017.03.008.
  48. Danton A., Roux J., Dance B., Cariou C., & Lenain R. (2020). Development of a spraying robot for precision agriculture: An edge following approach. 2020 IEEE Conference on Control Technology and Applications (CCTA), pp. 267-272. Doi: 10.1109/CCTA41146.2020.9206304.
  49. Fernández-Novales J., Saiz-Rubio V., Barrio I., Rovira-Más F., Cuenca-Cuenca A., Santos Alves F., Valente J., Tardaguila J., Diago M.P. (2021). Monitoring and Mapping Vineyard Water Status Using Non-Invasive Technologies by a Ground Robot. Remote Sens., 13, 2830. Doi: 10.3390/rs13142830.
  50. Rejeb A., Abdollahi A., Rejeb K., Treiblmaier H. (2022). Drones in agriculture: A review and bibliometric analysis. Computers and Electronics in Agriculture, 198, 107017. Doi: 10.1016/j.compag.2022.107017.
  51. Senoo E.E.K., Anggraini L., Kumi J.A., Karolina L.B., Akansah E., Sulyman H.A., Mendonça I., Aritsugi M. (2024). IoT Solutions with Artificial Intelligence Technologies for Precision Agriculture: Definitions, Applications, Challenges, and Opportunities. Electronics, 13, 1894. Doi: 10.3390/electronics13101894.
  52. Naïo Technologies (2022). TED: Vineyard Robot. -- Accessed on: 09.09.2024. Link: https://www.naio-technologies.com/en/home/.
  53. Vitirover (2023). Robotic solutions for vineyard maintenance. -- Accessed on: 09.09.2024. Link: https://www.vitirover.fr/.
  54. DJI Agras Series. -- Accessed on: 09.09.2024. Link: https://ohiodronerepair.com/collections/dji-agras-series.
  55. Sensit Smart Vineyard System. -- Accessed on: 09.09.2024. Link: https://www. agriteach.hu/en/content/smart-vineyard.
  56. SwarmFarm Robotics. -- Accessed on: 09.09.2024. Link: https://www. swarmfarm.com/.
  57. Wall-Ye V.I.N. -- Accessed on: 09.09.2024. Link: https://phys.org/news/2012-09-wall-ye-wine-robot-burgundy.html#:~:text=The%20price%20tag%20for%20the,as%20a%20medium%2Dsize%20car.
  58. RoboVigneron. -- Accessed on: 09.09.2024. Link: https://www.spectator.co.uk/ article/frances-vineyards-have-been-invaded-by-robots/.
  59. Agrobot Grape Picker. -- Accessed on: 09.09.2024. Link: https://www.therobotreport.com/are-ag-robots-ready-27-companies-profiled /#:~:text=Price%3A%20%24250%2C000%20for%20a%20harvester,are%20not%20sufficient%20people%20for.
  60. VineScout. -- Accessed on: 09.09.2024. Link: https://www.international winechallenge.com/Canopy-Articles/updated-robot-roams-french-vineyards.html#:~:text=Price%20is%20around%20%2440%2C000%20per,recently%20showed%20its%20third%20prototype.
  61. Ecorobotix (prototype). -- Accessed on: 09.09.2024. Link: https://ecorobotix.com/en/.
  62. DJI Agras T30 (Drone). -- Accessed on: 09.09.2024. Link: https://www.fullcompass.com/prod/615864-dji-matrice-30t-complete-kit-plus-m30t-enterprise-drone-with-2x-batteries-and-plus-care-plan?gad_source=1&gclid=CjwKCAjwufq2BhAmEiwAnZqw8viLDDifSLt_CbxD4lpRz94qHT6RpXt9U5rghMQMw-w0u7MsnKgUbhoCy2IQAvD_BwE.
  63. Parrot Anafi USA (Drone). -- Accessed on: 09.09.2024. Link: https://advexure.com/products/parrot-anafi-usa?variant=34811571142811&currency=USD&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic&nbt=nb%3Aadwords%3Ax%3A20417625255%3A%3A&nb_adtype=pla&nb_kwd=&nb_ti=&nb_mi=101159278&nb_pc=online&nb_pi=shopify_US_5337898516635_34811571142811&nb_ppi=&nb_placement=&nb_li_ms=&nb_lp_ms=&nb_fii=&nb_ap=&nb_mt=&gad_source=1&gclid=CjwKCAjwufq2BhAmEiwAnZqw8kxgFtGRu2ZjqN-txk8DUG2PuVwM8YnMOnR_Ct_GtzcTcKZOoX8YBRoCfy0QAvD_BwE.
  64. VineRobot. -- Accessed on: 09.09.2024. Link: https://www.international winechallenge.com/Canopy-Articles/updated-robot-roams-french-vineyards.html#:~:text=The%20robot%20is%20relatively%20lightweight,is%20around%20%2440%2C000%20per%20unit.
  65. Sentera PHX (Drone). -- Accessed on: 09.09.2024. Link: https://www. dronenerds.com/products/sentera-phx-fixed-wing-drone-51142-00-sentera?srsltid=AfmBOooVtb6dkAQNktDU23_L78MEZrXBK1MDaJ9EN5SiSecpv8Lh8IgA.
  66. Agrobot E-Series. -- Accessed on: 09.09.2024. Link: https://www. agrobot.com/e-series.
  67. TED (Vineyard Robot by Naïo Technologies). -- Accessed on: 09.09.2024. Link: https://www.futurefarming.com/naio-ted-mechanical-weeding-and-cultivation/.
  68. DJI Agras Series. -- Accessed on: 09.09.2024. Link: https://www.dronenerds. com/collections/drones-enterprise-drones-dji-agras-series-agras-mg-1-series.
  69. Sensit Smart Vineyard System. -- Accessed on: 09.09.2024. Link: https://www.zimmerpeacocktech.com/2021/01/30/zp-hyper-value-screen-printed-electrodes/.
  70. Vitirover Mowing Robot. -- Accessed on: 09.09.2024. Link: https://www.robotshop.com/products/vitirover-robot-vitirover-vr8-solar-4wd-100-autonomous-robotic-mower-large-bumpy-fields?srsltid=AfmBOooWpj MgRtpPDFmMcvRfQNJox_S_mvslaKa6ClmioXDge-QwuTT5.
  71. GUSS (Global Unmanned Spray System). -- Accessed on: 09.09.2024. Link: https://www.futurefarming.com/tech-in-focus/field-robots/guss-launches-autonomous-herbicide-sprayer-for-orchards/#:~:text=Sale%20price%20of%20autonomous%20herbicide%20sprayer%20is%20US%20%24298%2C000&text=The%20sale%20price%20is%20US,herbicide%20sprayers%20in%20Spring%202023.
  72. Vitirover. -- Accessed on: 09.09.2024. Link: https://www.futurefarming.com/vitirover-autonomous-robots-for-weeding/.
  73. Fendt Rogator 300 Series. -- Accessed on: 09.09.2024. Link: https://www. tractorhouse.com/listings/for-sale/fendt/rogator/farm-equipment?srsltid= AfmBOooJnnzJZoyqhdAolOJn0KBPX4FofoGYNtQqzNE_Xwmq1QYQRvy1.
  74. Vulcan Agri Sprayer. -- Accessed on: 09.09.2024. Link: https://www. marketbook.ca/listings/for-sale/brandt-tractor-ltd-dot-vulcan-alberta/sprayers-chemical-applicators/1142?LocationID=350000107403.
  75. AgXeed AgBot. -- Accessed on: 09.09.2024. Link: https://www. futurefarming.com/agxeed-agbot-track-based-multi-utility-robot/.
  76. KOSOVO VITICULTURE AND WINERY 2023. MINISTRY OF AGRICULTURE, FORESTRY AND RURAL DEVELOPMENT. -- Accessed on: 10.09.2024. Link: https://www.mbpzhr-ks.net/repository/docs/Kosovo_ Viticulture_and_Winery_2023.pdf.
  77. Kosovo Agriculture in Numbers 2023. -- Accessed on: 10.09.2024. Link: https://www.mbpzhr-ks.net/repository/docs/Kosovo_Agriculture_in_numbers_ 2023.pdf.
  78. The prices of agroproducts-2021-2022. Accessed on: 10.09.2024. Link: https://www.mbpzhr-ks.net/repository/docs/Cmimet_e_produkteve_bujqesore_ 2021__2022.pdf.
  79. Niyonzima C. & Extension, Kiu Publication (2024). The Role of Robotics in Agriculture: Enhancing Productivity and Sustainability, 3: 28-31.
  80. Wine Belt - Vocab, Definition, and Must Know Facts | Fiveable. -- Accessed on: 10.09.2024. Link: https://library.fiveable.me/key-terms/ap-hug/wine-bel.
  81. Wang C., Pan W., Zou T., Li C., Han Q., Wang H., Yang J., Zou X. (2024). A Review of Perception Technologies for Berry Fruit-Picking Robots: Advantages, Disadvantages, Challenges, and Prospects. Agriculture, 14, 1346. Doi: 10.3390/agriculture14081346.