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Abstract 
During physical activity, the contracting skeletal muscle acts as an endocrine organ 
for its ability to secrete molecules called myokines, mostly cytokines and growth 
factors, which modulate metabolic and cellular functions in different organs and 
tissues. Some of the most relevant for the brain include Brain-Derived Neurotrophic 
Factor, Insulin-like growth factor-1, Interleukin-6, Irisin, cathepsin B, and vascular 
endothelial growth factor, which are involved in muscle-brain crosstalk. Brain-
Derived Neurotrophic Factor improves cognitive functions by neurogenesis, and the 
increase of plasticity in the hippocampus region. This review aims to provide recent 
insights on the role played by physical activity and diet in ameliorating cognitive 
functions, focusing on the effects involving Brain-Derived Neurotrophic Factor. 
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Introduction 
 

In the last few decades, the recent and rapid progress in bio-medical 
research and socio-economic improvements have led to an increase in life 
expectancy which, however, has greatly increased dementia and 
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neurodegenerative disorders, especially in the elderly population (Davis et 
al., 2022). In addition, sedentary behaviors, which are characterized by a low 
energy expenditure (≤ 1.5 metabolic equivalents, METs) contribute to the 
risk factors linked to cognitive decline and dementia (Tremblay et al., 2017). 
To prevent neurodegenerative disorders or reduce their harmful effects on 
cognitive functions in older adults, several non-pharmacological 
interventions, such as physical activity (PA), are used. Indeed, the regular 
practice of PA emerged as the most useful approach for positively 
influencing health, well-being, and enhancing cognitive functions in humans 
(Montesano et al., 2013; Erickson et al., 2019; Nazlieva et al., 2019; Nasso 
et al., 2024). For example, PA enables healthy older adults to improve their 
executive functions and memory, whereas only global cognition is improved 
in their peers with cognitive impairments (Sanders et al., 2019). The same 
finding was observed for several cognitive functions (Memory, executive 
functions, processing speed and global cognition) in sedentary older adults 
(Zhao et al., 2022). At the macroscopic level, the beneficial effects of PA on 
cognitive functions are explained by neurogenesis, synaptogenesis, and 
angiogenesis (Lista and Sorrentino, 2010). The key molecular mechanisms 
underlying these macro-level changes that induce the beneficial effects of 
PA on cognitive functions involve myokines, including proteins and peptides 
secreted by contracting skeletal muscle, which acts as an endocrine organ 
(Iizuka et al., 2014; Pedersen and Febbraio, 2012; Severinsen et al., 2021). 
Myokines act in a hormone-like manner modulating metabolism and cellular 
functions in different organs (Severinsen et al., 2021). Among these 
myokines, Brain-Derived Neurotrophic Factor (BDNF) exerts a pivotal role 
in improving cognitive functions. Furthermore, PA and/or an appropriate 
diet can reduce the age-related cognitive decline associated to 
neurodegenerative disorders, such as Alzheimer’s disease (AD) and 
Parkinson’s disease (PD) (Chieffi et al., 2017; Miranda et al., 2019). This 
review aims to provide recent insights on the role played by PA and diet in 
ameliorating cognitive functions, focusing in particular on the effects 
involving BDNF. 
 
 
1. Myokines involved in muscle-brain crosstalk and cognitive 
improvement 
 

Myokines are signaling molecules secreted by contracting skeletal 
myofibers (Iizuka et al., 2014; Severinsen et al., 2021). Up to now, about 
1,110 myokines have been identified which can act in an autocrine, paracrine 
and endocrine manner modulating energy metabolism and plasticity of the 
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skeletal muscle cell, that includes hypertropia, hyperplasia and the repair 
process of damaged tissues (Lee et al., 2019; Bortoluzzi et al., 2006; 
Pedersen and Febbraio, 2012). Among these myokines, BDNF, Interleukin-
6 (IL-6), Insulin-like Growth Factor-1 (IGF-1), irisin, Leukemia Inhibitory 
Factor (LIF) have been identified as mediators of brain neuroplasticity and 
cognitive functions (Miranda et al., 2019; Pedersen, 2019; Vints et al., 
2023). However, BDNF is the major myokine involved in muscle-brain 
cross-talk whose expression level can be up-regulated PA and an appropriate 
diet, thus improving cognitive functions (Liu and Nusslock, 2018; Miranda 
et al., 2019; Vints et al., 2023).  
 
 
2. BDNF and cognitive functions 
 
2.1. BDNF structure and functions 
 

BDNF is a 25-28 kDa homodimer protein, belonging to the neurotrophin 
family which also includes Nerve Growth Factor (NGF), Neurotrophin (NT) 
-3 and NT-4, structurally related members playing crucial roles in the 
survival and differentiation of neurons in the nervous system (Hernández et 
al., 2024). BDNF is one of the major neurotrophins essential for neuron 
growth and survival; it is mostly involved in the synaptic plasticity which 
controls memory and learning processes (Liu and Nusslock, 2018; Miranda 
et al., 2019). Mechanisms underlying cognitive enhancement exerted by 
exercise-induced BDNF include neurogenesis, increased synaptic plasticity 
which allows for better communication between neurons and 
neuroprotection during neurodegeneration process (Miranda et al., 2019; 
Vints et al., 2023).  
 
2.2. BDNF expression, regulation and bio-signaling pathways 
 

BDNF is synthetized by various cell types, and its expression and 
secretion are regulated in response to different factors, such as age, 
pathological conditions, PA (Brigadski and Leßmann, 2020). The alteration 
of BDNF concentration in tissue and serum is associated with 
neurodegenerative, neurological, or even cardiovascular diseases (Brigadski 
and Leßmann, 2020). In the central nervous system, BDNF is predominantly 
detected in the brain, particularly in the hippocampus, cerebral cortex, 
amygdala, striatum and hypothalamus (Edelmann et al., 2014). 
BDNF is expressed by nervous cell types such as glutamatergic neurons, 
astrocytes and microglia (Marie et al., 2018). In non-neurogenic tissues, 
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BDNF is expressed in (Cefis et al., 2020), heart, kidneys, submaxillary 
glands, ovaries, dorsal ganglia, lungs and skeletal muscle (Gass and Hellweg, 
2010). 

Like many hormones and growth factors, BDNF is synthetized as 
proBDNF precursor (32-35 kDa) (Koshimizu et al., 2009) which is 
subsequently cleaved either intracellularly by serine proteases such as PC1/3 
or furin, or extracellularly by plasmin and/or matrix metalloproteases (MMPs) 
to form mature protein (Matsumoto et al., 2019). ProBDNF and mature 
BDNFs show opposite effects interacting respectively with the p75 
neurotrophin receptor (p75NTR) or Trk tyrosine kinase receptors; in fact, 
ProBDNF induces synaptic weakening, apoptosis and long-term depression 
whereas BDNF exerts vital functions (Koshimizu et al., 2009). However, 
further research is needed to fully understand the proBDNF role and functions. 

Mature BDNF binds to the low affinity receptor tyrosine kinase TrkB and 
to the p75 receptor with high affinity; the binding to TrkB stimulates the 
dimerization and phosphorylation of the receptor with activation of the 
intracellular tyrosine kinase domain that interacts with different intracellular 
targets such as MAP kinases and phosphatidyl-inositol 3 kinase (Sasi et al., 
2017). 

Within the brain, BDNF receptor activation increases synaptic plasticity, 
the number of dendritic spines, and the release of the neurotransmitters 
glutamate, γ-aminobutyric acid (GABA), dopamine and serotonin (Leal et 
al., 2014). 
 
2.3. BDNF in neurodegenerative disorders 
 

In neurodegenerative diseases, such as AD, PD and Huntington’s disease, 
the cognitive impairment, including memory, thinking and judging skills, has 
been linked to the reduced expression of BDNF level (Narisawa-Saito, et al., 
1996; Hock, et al., 2000; Zuccato, et al., 2008). Alterations of BDNF 
expression have been described in the brain area responsible for memory 
processes, such as the hippocampus and parahippocampal, which are 
involved in psychiatric and neurodegenerative disorders (Miranda et al., 
2019). In AD disease, the decreased neurogenesis with impaired 
neuroplasticity leading to depression and memory loss have been correlated 
to a decrease in BDNF levels (Miranda, et al., 2019).  
 
 
3. Strategies targeting BDNF for the treatment of cognitive decline 
 

Since a decrease in BDNF expression levels has been linked to the 
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cognitive decline observed in aging and neurodegenerative, neurological and 
psychiatric disorders (Miranda et al., 2019), new strategies for cognitive 
improvement aimed at increasing BDNF expression level have been 
developed (Nicastri et al., 2022). Here we highlight the major 
pharmacological or non-pharmacological approaches usefull to enhance 
BDNF levels. 
 
3.1. Pharmacological strategies for improving cognitive functions 
 

Up to now, many efforts have been employed to find pharmacological 
therapies for the treatment of AD which can also ameliorate cognitive 
functions and delay further progression. Cholinesterase inhibitors, which 
prevent the breakdown of acetylcholine, primarily used for the treatment of 
AD and PD, such as Donepezil, Galantamine and Rivastigmine can 
ameliorate the symptoms of the disease, however they only induce a modest 
improvement of cognitive function, exerting side-effects and without being 
able to revert the diseases (Miculas et al., 2023). Glutamate antagonists such 
as memantine, a N-methyl-D-aspartate (NMDA) receptor antagonists, act by 
regulating glutamate activity and improving dopamine transmission; they 
can increase memory and attention but induce side-effects (Wesnes et al., 
2015). 

However, considering low efficacy in memory improving and of side 
effects exerted by these drugs, several studies investigated alternative 
approaches focusing on the increase of BDNF exerted by PA and nutritional 
interventions.  
 
3.2. Physical activity and BDNF 
 

Many studies have investigated whether different types of PA could affect 
BDNF expression levels, by evaluating the effects of a single exercise (acute 
effects) or the regular practice of physical exercise (chronic effects) in 
humans. In studies analyzing the acute effects of PA on BDNF levels, it has 
been demonstrated that in men, 40 min of vigorous exercise increases 
circulating BDNF levels (Schmolesky et al., 2013). This enhancement of 
BDNF levels was not associated to the type of exercise (aerobic or 
resistance) (Arazi et al., 2021) or to the health status (healthy or with AD) in 
elderly adults (Coelho et al., 2014). Apart from these results, several meta-
analyses from studies aiming to evaluate the acute effect of PA on BDNF 
levels, have confirmed the increase of serum or plasma BDNF concentration 
(Dinoff et al., 2017; Szuhany et al., 2015). In addition, studies investigating 
the chronic effect of PA on BDNF levels, demonstrated that a one-year 
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aerobic intervention resulted in a growth of BDNF concentration which was 
correlated to an increase of volume in the right and left hippocampal regions 
(Erickson et al., 2010). A six-month aerobic intervention (45 to 60 minutes, 
4 times per week, 75% to 85% of heart rate reserve) showed an increase in 
BDNF in women with mild cognitive impairment (MCI) but not in their male 
peers (Baker et al., 2010). The meta-analysis by Szuhany and colleagues 
confirms these results, highlighting the increase in plasma or serum BDNF 
concentration after a 3-week to 2-year aerobic program at an intensity of 50-
80% of VO2max (Szuhany et al., 2015). The increase of BDNF concentration 
induced by PA involves the PGC-1α/FNDC5/BDNF signaling pathway 
(Wrann et al., 2013). Taken together, these studies indicated that both acute 
and chronic effects exerted by PA up-regulated BDNF expression, and its 
circulating form at the peripheral level can cross the blood-brain barrier 
influencing brain specific regions involved in cognitive performance (Pan et 
al., 1998). 
 
3.3. Diet and BDNF 
 

Among life-style interventions, diet plays a crucial role exerting 
beneficial effects on human health and brain functions modulating BDNF 
concentrations (Gravesteijn et al., 2022). Evaluation of dietary patterns has 
revealed that the Mediterranean diet, characterized by high consumptions of 
vegetables, fruit, whole grains, nuts, fish and olive oil, has been associated 
to a reduced risk of cognitive decline and dementia (Arcone et al., 2023; 
Maiuolo et al., 2023; D’Errico et al., 2024), particularly through the increase 
of BDNF expression levels (Fu et al., 2022; Tirani et al., 2024; Fekete et al., 
2025). The most effective dietary components of the Mediterranean diet 
include polyphenols, such as flavonoids (in grains, vegetables, fruit, olive 
oil, and beverages such as red wine, tea, chocolate, coffee) and other 
nutritional factors such as omega-3 fatty acids (fish, almonds, walnuts) 
(Román et al., 2019; Ziaei et al., 2024). Also, vitamins B6, B12, and folate 
are crucial for neurological functions because their deficiencies are 
associated with cognitive impairment and dementia (Agnew-Blais et al., 
2015). 

Diet polyphenols may induce BDNF upregulation through different 
mechanisms, which encompass their anti-oxidant and anti-inflammatory 
properties effect thus supporting BDNF-supporting neuronal survival 
(Grabska-Kobyłecka et al., 2023). These effects are exerted by various bio 
signaling pathways, including the cAMP response element-binding protein 
(CREB) pathway, leading to enhanced BDNF transcription (Jalouli et al., 
2025). 
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Conclusion and future perspectives 
 

In this review, we discuss the role of physical activity in promoting brain 
health, mostly increasing the production BDNF by contracting skeletal 
myofibers. BDNF acts enhancing plasticity, cognition, learning, and 
memory. BDNF behaves as a key regulator of neuroplasticity and cognitive 
functions, acting through complex bio signaling pathways which regulate 
energy metabolism and brain functions. The increase of BDNF expression 
during physical activity highlights its therapeutic potential for cognitive 
decline linked to aging and neurodegenerative disorders. In addition, the 
adoption of dietary pattern as the Mediterranean diet constitutes a promising 
strategy to enhance BDNF’s benefits for brain function, and prevention of 
cognitive impairments. 

These lifestyle interventions enhance BDNF expression level thus 
preventing, delaying cognitive decline and ameliorating learning and 
memory functions. Cognitive functions are fundamental to human behavior, 
learning, and adaptation, enabling individuals to apply knowledge, problem 
solving and intellectual development. The research in the neuroscience field 
demonstrated the role of brain regions, such as hippocampus, cerebral cortex, 
and neurotrophic factors, mostly the exercise-induced BDNF in the 
regulation of cognitive processes. Although further research is needed to 
better understand the relationship among PA, diet and BDNF expression, 
current evidence indicates that adopting healthy lifestyle certainly 
contributes to enhancing cognitive abilities and overall well-being. 
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