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Abstract: The science of the microbiota, by revealing the complexity of interactions between
the world of microorganisms that colonize us and that of human cells, represents the dawn of a
new paradigm in biomedical and psychological sciences. It allows for a more complex yet more
promising perspective on human health and disease compared to previous approaches. Scientific
literature has now identified specific lifestyle-related factors (nutrition, environmental physical-
chemical quality, psychological well-being, etc.) that significantly influence the composition of
the microbiota. This paper introduces the concept of the “funnel effect” of the microbiota to de-
scribe the convergent and partially independent nature of these factors (nutrition, physical activ-
ity, psychological well-being, sleep quality, social support, environmental physical-chemical
quality, circadian rhythms) on the composition of the intestinal microbiota, thereby impacting
the overall health of the human organism. The “funnel effect” of the microbiota has some highly
relevant clinical implications, emphasizing the need for an integrated psycho-neuro-endocrine-
immunological approach, in contrast to the highly specialized and molecularly focused approach
that is currently widely adopted.

Key words: Microbiota, PNEI paradigm, Nutrition, Physical activity, Psychological well-
being, Epigenetic.
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At the end of the last century, the massive Human Genome Project aimed to fully
map human DNA with the ambition of understanding and potentially solving any
human disease. This optimistic expectation stemmed from the theoretical concept of
the so-called “central dogma of molecular biology”, which posits that a gene (part of
the genotype) corresponds to a specific protein (phenotype) and that there can be no
informational flow from the phenotype to the genotype — only a unidirectional flow
from the gene to the protein structure (Bottaccioli F. & Bottaccioli A.G., 2017;
Gottlieb, 2000). Paradoxically, the success of the Human Genome Project in fully se-
quencing human DNA marked the end of the “central dogma of molecular biology”
because it exposed the theoretical inadequacy of this concept considering the data
emerging from genetic analysis and the complexity of human bio-psycho-social in-
teractions. A striking example is the fact that a complex organism like a human pos-
sesses a genetic heritage of “only” about 25,000 genes, compared to wheat, which has
around 150,000, and that the percentage of coding genes is limited to approximately
2% of the entire human genome.

As often happens in the history of science, the partial failure of the ambitious
Human Genome Project, on one hand, led to an increasing awareness of the explana-
tory inadequacy of the “central dogma of molecular biology” in relation to human
phenotypic complexity. On the other hand, however, it laid the foundation for two
major revolutions — still ongoing — in the scientific landscape. The first revolution
concerns epigenetics, the study of factors (both hereditary and non-hereditary) that
modify an organism’s phenotype without altering the DNA sequence. In other
words, it involves studying the flow of information from the environment to the
DNA, thereby influencing the expression of the genotype. The second revolution is
represented by microbiota science, which examines the trillions of microorganisms
(bacteria, fungi, viruses, protozoa) that colonize our bodies.

Thanks to the genetic analysis technologies developed for the Human Genome
Project, significant progress has been made in studying the microbiota and under-
standing the extent to which interactions among its microorganisms affect human
cells. This emerging field of study has begun to uncover the astonishing complexity
and significant impact of the microorganisms inhabiting our bodies in shaping hu-
man health and quality of life. Strengthening this broader perspective — one that in-
cludes the microbiota’s influence on human bio-psycho-social well-being — there is
now substantial evidence showing that the microbial ecosystem colonizing us pro-
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foundly affects complex functions such as nutrient absorption, immune system regu-
lation, and neurodevelopment. It modulates systems like the stress axis and even in-
fluences cognitive, emotional, and motivational aspects. The interaction between the
microbiota and intestinal permeability plays a particularly crucial role in modulating
the immune system and the epigenetic impact on the human host. This makes it a
key factor in the development of chronic inflammatory diseases, which have become
a true “epidemic” in industrialized countries (Fasano, 2020).

The remarkable influence of the microbiota has shed light on the etiopathogenesis
of conditions such as celiac disease, obesity, and ulcerative colitis, as well as psycho-
logical disorders, including anxiety, depression, and various psychopathologies such
as autism spectrum disorders and schizophrenia (Caio et al., 2019; Cheung et al., 2019;
Foster & McVey Neufeld, 2013; Garrett et al., 2007; Li & Zhou, 2016; Mangiola ef al.,
2016; Rodrigues-Amorim et al., 2018; Sharon et al., 2019; Simpson et al., 2021).

It is important to note that the emergence of the new paradigm, which positions
the microbiota as a key player in our health, has been driven precisely by research
demonstrating how the microbiota influences neurobehavioral and psychological
dimensions — such as anxious or depressive states, sociality, and risk perception (Al-
len et al., 2017; Ann et al., 2024; Bercik et al., 2011; Bravo et al., 2011; Carloni et al., 2021;
Chen et al., 2019; Cheung et al., 2019; Cryan & Dinan, 2012; Cryan & OMahony, 2011;
De Palma et al., 2015; Farmer, Randall & Aziz, 2014; Koenig et al., 2011; Ottman et al.,
2012; Wu et al., 2021) and how certain phenotypic characteristics of these dimensions
can even be transferred from one organism to another through the so-called «micro-
biota transplantation» (Chinna Meyyappan et al., 2020; Collins et al., 2013; Cryan &
Dinan, 2012; Kelly et al., 2016).

It has long been known that the mind can influence intestinal well-being (also be-
cause this is intuitively evident from an experiential perspective), but the study of
the microbiota has also demonstrated the existence of the opposite causal direction,
in which intestinal microorganisms exert an effect on psychosocial dynamics.

The significant impact of the microbiota on the human organism includes endo-
crine and immunological dynamics, as well as neural and psychological ones, thus
affecting the entire complexity of human bio-psycho-social interactions. This is one
of the reasons why it would be more appropriate to refer to the “microbiota-gut-
brain-mind axis” rather than the reductive, yet widely used, term “microbiota-gut-
brain axis”, which erroneously considers the mind and brain to be entirely coincident
(Agnoletti, 2023a).

The impact of microbiota interaction on human cells is remarkable, considering
that the total mass of bacteria alone is estimated to be between 0.2 kg and 1 kg (70%
of which are located in the gut), the number of bacteria is estimated to be equal to or
greater than that of human cells, and most importantly, the genetic content of bacte-
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ria alone is approximately 100 to 1.000 times greater than that of humans (Sender,
Fuchs & Milo, 2016a; Sender, Fuchs & Milo, 2016b).

Given the symbiotic relationship between microbiota and human cells, the micro-
biome — the collective genetic heritage of the microorganisms that make up the mi-
crobiota — represents a variable component of the human genome. In fact, due to its
significantly larger genetic contribution compared to the human genome, the micro-
biota plays a crucial epigenetic role in relation to human cells, making it fundamental
in determining human well-being, health, and longevity (Chang et al., 2014; Claesson
et al., 2012; Cornuti ef al., 2013; Dalile et al., 2019; Kumar et al., 2014; Lopez-Otin et al.,
2013; Ottaviani, 2011).

Understanding epigenetic dynamics is essential to grasp the complex interaction
between the microbiota and human cells because studying the factors that influence
genetic expression allows us to conceptualize the entire microbiota ecosystem as an
extra-genetic factor (“extra” in relation to human DNA) that further extends the
adaptive capacity of human cells. The additional genetic contribution of the microbi-
ota enables the human holobiont organism (represented by the collaboration be-
tween human cells and microorganisms) to adapt more effectively to different envi-
ronmental conditions, providing clear evolutionary advantages (Agnoletti, 2023b;
Gasbarrini, Dionisi & Gasbarrini, 2019; Fasano, 2022). The nature of the genetic con-
tribution of the microbiota represents the greatest factor of interindividual diversity.
In fact, while human interindividual genetic heritage is approximately 99,9% identi-
cal, the genetic diversity of the microbiota between two individuals can reach as high
as 80-90% (Gasbarrini, Dionisi & Gasbarrini, 2019).

The genetic diversity of the microbiota is primarily determined by environmental
factors and only marginally by the host's human genetics (Rothschild et al., 2018).
Therefore, we can assert that almost the entire contribution of the microbiota to human
cells is due to environmental factors rather than human genetic content. Human fitness
is thus highly dependent on the epigenetic role of the microbiota, as it significantly ex-
pands the body’s ability to adapt to variable contexts, such as the food we eat, the
physical activity we engage in, the physicochemical quality of the environments we
frequent, and the psychosocial stress we experience. Despite these variations, the mi-
crobiota still ensures the homeostasis of key physiological systems, including blood
pressure, heart rate, blood volume, hydration, pH, bone density, and more.

For the purposes of this discussion, it is important to note that the currently avail-
able literature has clearly demonstrated that factors such as:

e Nutrition (Putignani & Dallapiccola, 2016; Valitutti, Cucchiara & Fasano, 2019;

Zhang & Zuo, 2018),

e Physical activity (Allen et al., 2018; Aragdn-Vela et al., 2021; Mohr et al., 2020),
e Sleep quality (Neroni et al., 2021; Sen et al., 2021; Smith et al., 2019),
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¢ Circadian rhythms (Bermingham et al., 2023; Thaiss et al., 2014; Voigt et al., 2016),

e Physicochemical environmental quality (De Filippis et al., 2024; Estevinho et al.,
2024; Mousavi et al., 2022),

o Perceived social support (Cryan ef al., 2019; Kim et al., 2021; Winter et al., 2018),

e Psychological well-being (Chang et al., 2024; Ge et al., 2022; llchmann-Diounou &
Ménard, 2020), influence the composition of the microbiota, thereby modifying its
adaptive contribution — both epigenetic and non-epigenetic — to the entire organ-
ism, ultimately affecting human health and quality of life. For the purposes of this
discussion, it is particularly interesting to note that the currently available scien-
tific literature does not highlight the dominance of one factor over the others in
influencing the microbiota. Instead, it describes a dose-dependent quantitative ef-
fect for each of them.

All the factors considered influence one another to some extent (for instance,
physical activity affects sleep quality, and circadian rhythms impact the metabolic
effects of nutrition). However, each factor also maintains a certain degree of autono-
my from the others due to its unique causal mechanism in shaping the microbiota.
For example, the management of psychological stress and the physicochemical envi-
ronmental quality are both factors that influence the microbiota, but they do so at
least partially independently of each other, as they follow different causal pathways.
The “sensitivity” of the microbiota to multiple factors is thus somewhat independent
of the specific nature of the influencing factor itself. In other words, whether it is nu-
trition, psychological well-being, or physical activity, there will always be an impact
on the composition of the microbiota. For instance, dysbiosis may initially stem from
a nutritional deficiency, a psychological trauma, or excessive sedentary behavior,
even though the causal dynamics linking nutrition, psychological states, and physi-
cal activity to the microbiota are at least partially independent of one another.

The fact that various factors converge in modifying the microbiota does not mean
that their impact is the same in terms of intensity or frequency. Naturally, the causal
pathway resulting from chronic sleep deprivation has a different impact on the mi-
crobiota compared to, for example, a single mild exposure to pesticides.

Considering the diversity and partial independence of the different factors that in-
fluence the microbiota, it is equally interesting to highlight the common convergence
in modifying the composition of this complex ecosystem that colonizes our body.

For these reasons, the authors propose the concept of the “microbiota funnel ef-
fect” to describe the characteristic convergence of the seven main factors identified in
the scientific literature (nutrition, physical activity, psychological, sleep-related, so-
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cial, environmental, and circadian), which, in a partially independent manner, con-
tribute to altering the composition of the gut microbiota (see Figure 1).

Fig. 1. The Microbiota’s Funnel Effect
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The common convergence of the seven lifestyle-related factors on the microbiota
has significant implications for peoples well-being and health, highlighting the need
for a systemic and holistic approach to promoting well-being and treating subopti-
mal and pathological conditions.

From a clinical perspective, the “microbiota funnel effect” asserts that, given the
high psycho-neuro-endocrine-immunological integration of the considered factors
and the significant epigenetic impact of the microbiota on human cell function, the
only way to ensure an effective clinical intervention is to adopt a systemic vision that
includes a comprehensive evaluation of all factors. Continuing to use a specialist ap-
proach that analyses and treats only one (or even some, but not all) of these factors
by decontextualizing it from the others is equivalent to adopting a reductionist per-
spective. This reductionistic approach, by failing to account for the convergent and
partially independent nature described by the “microbiota funnel effect”, proves to
be clinically ineffective, particularly in addressing chronic conditions.

The concept of the “microbiota funnel effect” calls for a radical shift in clinical
protocols, as it necessitates at least an initial comprehensive (but not generic) as-
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sessment of the individual factors involved and the patient’s gut health (which in-
cludes the general state of the microbiota). For any professional whose goal is to
enhance human health and well-being, the “microbiota funnel effect” represents a
new paradigm that demonstrates the clinical necessity of a truly integrated, holis-
tic, and scientific approach — essential for addressing complex issues involving the
microbiota.
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